首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1102篇
  免费   95篇
  国内免费   186篇
  2024年   2篇
  2023年   30篇
  2022年   31篇
  2021年   43篇
  2020年   48篇
  2019年   72篇
  2018年   30篇
  2017年   46篇
  2016年   45篇
  2015年   37篇
  2014年   65篇
  2013年   66篇
  2012年   41篇
  2011年   57篇
  2010年   42篇
  2009年   46篇
  2008年   59篇
  2007年   58篇
  2006年   69篇
  2005年   53篇
  2004年   44篇
  2003年   23篇
  2002年   30篇
  2001年   29篇
  2000年   32篇
  1999年   17篇
  1998年   23篇
  1997年   23篇
  1996年   21篇
  1995年   24篇
  1994年   19篇
  1993年   17篇
  1992年   19篇
  1991年   10篇
  1990年   15篇
  1989年   9篇
  1988年   6篇
  1987年   10篇
  1986年   8篇
  1985年   12篇
  1984年   10篇
  1983年   5篇
  1982年   9篇
  1981年   4篇
  1980年   9篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1974年   3篇
  1950年   1篇
排序方式: 共有1383条查询结果,搜索用时 15 毫秒
1.
Soldiers are fielded with a variety of equipment including battery powered electronic devices. An energy harvesting assault pack (EHAP) was developed to provide a power source to recharge batteries and reduce the quantity and load of extra batteries carried into the field. Little is known about the biomechanical implications of carrying a suspended-load energy harvesting system compared to the military standard assault pack (AP). Therefore, the goal of this study was to determine the impact of pack type and load magnitude on spatiotemporal and kinematic parameters while walking at 1.34 m/s on an instrumented treadmill at decline, level, and incline grades. There was greater forward trunk lean while carrying the EHAP and the heavy load (decline: p < 0.001; level: p = 0.009; incline: p = 0.003). As load increased from light to heavy, double support stance time was longer (decline: p = 0.012; level: p < 0.001; incline: p < 0.001), strides were shorter (incline: p = 0.013), and knee flexion angle at heel strike was greater (decline: p = 0.033; level: p = 0.035; incline: p = 0.005). When carrying the EHAP, strides (decline: p = 0.007) and double support stance time (incline: p = 0.006) was longer, the knee was more flexed at heel strike (level: p = 0.014; incline: p < 0.001) and there was a smaller change in knee flexion during weight acceptance (decline: p = 0.0013; level: p = 0.007; incline: p = 0.0014). Carrying the EHAP elicits changes to gait biomechanics compared to carrying the standard AP. Understanding how load-suspension systems influence loaded gait biomechanics are warranted before transitioning these systems into military or recreational environments.  相似文献   
2.
3.
Soldiers routinely conduct load carriage and physical training to meet occupational requirements. These tasks are physically arduous and are believed to be the primary cause of musculoskeletal injury. Physical training can help mitigate injury risk when specifically designed to address injury mechanisms and meet task demands. This study aimed to assess lower-limb biomechanics and neuromuscular adaptations during load carriage walking in response to a 10-week evidence-based physical training program. Thirteen male civilian participants donned 23 kg and completed 5 km of load carriage treadmill walking, at 5.5 km h−1 before and after a 10-week physical training program. Three-dimensional motion capture and force plate data were acquired in over-ground walking trials before and after treadmill walking. These data were inputs to a musculoskeletal model which estimated lower-limb joint kinematics and kinetics (i.e., moments and powers) using inverse kinematics and dynamics, respectively. A two-way analysis of variance revealed significant main effect of training for kinematic and kinetics parameters at the knee and ankle joints (p < 0.05). Post-Hoc comparisons demonstrated a significant decrease (4.2%) in total negative knee power between pre- and post-March 5 km measures after training (p < 0.05). Positive power contribution shifted distally after training, increasing at the post-march measure from 39.9% to 43.6% at the ankle joint (p < 0.05). These findings demonstrate that a periodised training program may reduce injury risk through favourable ankle and knee joint adaptations.  相似文献   
4.
Human cognitive ability shows consistent, positive associations with fitness components across the life-course. Underlying genetic variation should therefore be depleted by selection, which is not observed. Genetic variation in general cognitive ability (intelligence) could be maintained by a mutation–selection balance, with rare variants contributing to its genetic architecture. This study examines the association between the total number of rare stop-gain/loss, splice and missense exonic variants and cognitive ability in childhood and old age in the same individuals. Exome array data were obtained in the Lothian Birth Cohorts of 1921 and 1936 (combined N = 1596). General cognitive ability was assessed at age 11 years and in late life (79 and 70 years, respectively) and was modelled against the total number of stop-gain/loss, splice, and missense exonic variants, with minor allele frequency less than or equal to 0.01, using linear regression adjusted for age and sex. In both cohorts and in both the childhood and late-life models, there were no significant associations between rare variant burden in the exome and cognitive ability that survived correction for multiple testing. Contrary to our a priori hypothesis, we observed no evidence for an association between the total number of rare exonic variants and either childhood cognitive ability or late-life cognitive ability.  相似文献   
5.
Our primary objective was to examine external hip joint moments during walking in people with mild radiographic hip osteoarthritis (OA) with and without symptoms and disease-free controls. Three groups were compared (symptomatic with mild radiographic hip OA, n = 12; asymptomatic with mild radiographic hip OA, n = 13; OA-free controls, n = 20). Measures of the external moment (peak and impulse) in the sagittal, frontal and transverse plane during walking were determined. Variables were compared according to group allocation using mixed linear regression models that included individual gait trials, with group allocation as fixed effect and walking speed as a random effect. Participants with evidence of radiographic disease irrespective of symptoms walked 14–16% slower compared to disease-free controls (p = 0.002). Radiographic disease without symptoms was not associated with any altered measures of hip joint moment compared to asymptomatic OA-free controls once speed was taken into account (p ≥ 0.099). People with both mild radiographic disease and symptoms had lower external peak hip adduction moment (p = 0.005) and lower external peak internal rotation moment (p < 0.001) accounting for walking speed. Among angular impulses, only the presence of symptoms was associated with a reduced hip internal rotation impulse (p = 0.002) in the symptomatic group. Collectively, our observations suggest that symptoms have additional mechanical associations from radiographic disease alone, and provide insight into potential early markers of hip OA. Future research is required to understand the implications of modifying walking speed and/or the external hip adduction and internal rotation moment in people with mild hip OA.  相似文献   
6.
Spinal cord injury (SCI) is a neurological condition, for which no cure exists, typically leading to an immediate and irreversible loss of sensory and voluntary motor functions accompanied by significant health problems. We conducted proof-of-concept experiments aimed at assessing efficacy upon oral administration of a novel combination therapy for central pattern generator (CPG) activation and corresponding locomotor movement generation in completely paraplegic animals. Co-administration orally (by gavage) of buspirone, levodopa and carbidopa was found to dose-dependently induce episodes of steady weight-bearing stepping in low-thoracic (Th9/10) spinal cord-transected (Tx) mice (with no other form of assistance or training). Robust hindlimb stepping with weight-bearing capabilities was induced with the tri-therapy but not with clinically relevant doses of these compounds administered separately. These results provide evidence suggesting that this drug combination may be ideally suited to constitute a first-in-class therapy (CPG activator) for locomotor activity induction in chronic SCI individuals, given that efficacy was shown using commercially available brain-permeable small molecules, already known as safe for the treatment of various neurological indications.  相似文献   
7.
We studied whether the time-varying forces that control unstable foot–ground interactions provide insight into the neural control of dynamic leg function. Twenty elite (10 F, 26.4 ± 3.5 yrs) and 20 recreational (10 F, 24.8 ± 2.4 yrs) athletes used an isolated leg to maximally compress a slender spring designed to buckle at low forces while seated. The foot forces during the compression at the edge of instability quantify the maximal sensorimotor ability to control dynamic foot–ground interactions. Using the nonlinear analysis technique of attractor reconstruction, we characterized the spatial (interquartile range IQR) and geometric (trajectory length TL, volume V, and sum of edge lengths SE) features of the dynamical behavior of those force time series. ANOVA confirmed the already published effect of sex, and a new effect of athletic ability, respectively, in TL (p = 0.014 and p < 0.001), IQR (p = 0.008 and p < 0.001), V (p = 0.034 and p = 0.002), and SE (p = 0.033 and p < 0.001). Further analysis revealed that, for recreational athletes, females exhibited weaker corrective actions and greater stochasticity than males as per their greater mean values of TL (p = 0.003), IQR (p = 0.018), V (p = 0.017), and SE (p = 0.025). Importantly, sex differences disappeared in elite athletes. These results provide an empirical link between sex, athletic ability, and nonlinear dynamical control. This is a first step in understanding the sensorimotor mechanisms for control of unstable foot–ground interactions. Given that females suffer a greater incidence of non-contact knee ligament injuries, these non-invasive and practical metrics of leg dexterity may be both indicators of athletic ability, and predictors of risk of injury.  相似文献   
8.
Summary Genetic effects for varietal value are defined at the level of the population of k-parent synthetic varieties. A simple expression for the total variance among synthetics arises directly from these definitions. A general expression for the covariance among related synthetics is given. Genetic effects are also defined in a completely general way so as to allow for any system of testing and used to derive an expression for the genetic advance in recurrent selection for varietal value. Covariances between relatives evaluated in the system of testing and in varietal combination are introduced, allowing a direct expression of the genetic advance in varietal development when parents are selected either individually or in groups. Some general implications for plant breeding are outlined.Dedicated to Professor F.W. Schnell on the occasion of his 65th birthday  相似文献   
9.
The analysis of offsprings from the partial diallel crosses is presented. In considered type of crossing, p parental forms into H separate groups are devided. Single crosses among parental forms, from separate groups only, are performed. The analysis for experiments laid out in efficiency balanced block designs is given.  相似文献   
10.
城市群生态安全格局构建:概念辨析与理论思考   总被引:1,自引:0,他引:1  
陈利顶  孙然好  孙涛  杨磊 《生态学报》2021,41(11):4251-4258
城市群是城市发展到一定阶段通过城市间物流、人流和能流高度融合而形成的区域性复合生态系统,如何保障城市群生态安全与健康发展成为当前关注的热点问题。本研究系统分析了生态安全、城市生态安全与城市群生态安全的内涵。认为狭义上城市群生态安全侧重于城市群内部生态空间优化和生态系统服务功能提升,重点关注城市群地区生态用地空间优化与"三生空间"(生态、生活及生产空间)的合理布局。广义上的城市群生态安全不仅需要考虑城市群内部生态系统结构和功能协调及其生态系统服务的供需平衡,也需要从区域尺度考虑城市群与其他区域之间的协调关系。城市群生态安全格局构建的目的则是保障城市群内部区域一体化协调发展,满足人们日常生活的基本需求,实现城市群与区域之间物流、能流和人流的有序流通。在城市群生态安全格局构建时,除了遵循生态安全一般性原则外,还需要遵循以下原则:①生态系统服务供需平衡尺度效应;②生态安全保障的阈值效应;③生态安全格局的空间联动效应。最后文章提出了城市群生态安全格局构建的基本思路和技术路径。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号