首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4317篇
  免费   372篇
  国内免费   118篇
  2024年   4篇
  2023年   56篇
  2022年   76篇
  2021年   160篇
  2020年   150篇
  2019年   185篇
  2018年   161篇
  2017年   104篇
  2016年   98篇
  2015年   187篇
  2014年   335篇
  2013年   328篇
  2012年   288篇
  2011年   431篇
  2010年   286篇
  2009年   199篇
  2008年   228篇
  2007年   210篇
  2006年   204篇
  2005年   159篇
  2004年   169篇
  2003年   127篇
  2002年   91篇
  2001年   63篇
  2000年   63篇
  1999年   55篇
  1998年   50篇
  1997年   37篇
  1996年   44篇
  1995年   48篇
  1994年   46篇
  1993年   28篇
  1992年   19篇
  1991年   23篇
  1990年   8篇
  1989年   9篇
  1988年   3篇
  1987年   6篇
  1986年   5篇
  1985年   10篇
  1984年   19篇
  1983年   9篇
  1982年   10篇
  1981年   5篇
  1980年   2篇
  1979年   3篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有4807条查询结果,搜索用时 15 毫秒
1.
Akt is perhaps the most frequently activated oncoprotein in human cancers. Overriding cell cycle checkpoint in combination with the inhibition of apoptosis are two principal requirements for predisposition to cancer. Here we show that the activation of Akt is sufficient to promote these two principal processes, by inhibiting Chk1 activation with concomitant inhibition of apoptosis. These activities of Akt cannot be recapitulated by the knockdown of Chk1 alone or by overexpression of Bcl2. Rather the combination of Chk1 knockdown and Bcl2 overexpression is required to recapitulate Akt activities. Akt was shown to directly phosphorylate Chk1. However, we found that Chk1 mutants in the Akt phosphorylation sites behave like wild-type Chk1 in mediating G2 arrest, suggesting that the phosphorylation of Chk1 by Akt is either dispensable for Chk1 activity or insufficient by itself to exert an effect on Chk1 activity. Here we report a new mechanism by which Akt affects G2 cell cycle arrest. We show that Akt inhibits BRCA1 function that induces G2 cell cycle arrest. Akt prevents the translocation of BRCA1 to DNA damage foci and, thereby, inhibiting the activation of Chk1 following DNA damage.  相似文献   
2.
Metabolism is recognized as an important driver of cancer progression and other complex diseases, but global metabolite profiling remains a challenge. Protein expression profiling is often a poor proxy since existing pathway enrichment models provide an incomplete mapping between the proteome and metabolism. To overcome these gaps, we introduce multiomic metabolic enrichment network analysis (MOMENTA), an integrative multiomic data analysis framework for more accurately deducing metabolic pathway changes from proteomics data alone in a gene set analysis context by leveraging protein interaction networks to extend annotated metabolic models. We apply MOMENTA to proteomic data from diverse cancer cell lines and human tumors to demonstrate its utility at revealing variation in metabolic pathway activity across cancer types, which we verify using independent metabolomics measurements. The novel metabolic networks we uncover in breast cancer and other tumors are linked to clinical outcomes, underscoring the pathophysiological relevance of the findings.  相似文献   
3.
In order to evaluate the importance of estrogen production in tumor and surrounding tissues, we measured mRNA expression levels of 5 enzymes participating to estrogen synthesis in situ and 4 breast cancer-related proteins in 27 pairs of tumor and non-malignant tissues. Steroid sulfatase (STS) mRNA was more frequently detected in tumor tissues rather than in their non-malignant counterparts. Estrogen sulfotransferase (EST) was constantly expressed with high level not only in tumor tissues but also in their surrounding non-malignant counterparts. In contrast, mRNA expression levels of aromatase, and 17β-hydroxysteroid dehydrogenase type I and II were relatively low and detected only in small proportion of the patients. We also measured the mRNA expression levels of the same nine genes in tumor tissues of 197 breast cancer patients, and analyzed relationship between the mRNA expression level and the clinicopathological parameters. The mRNA expression levels of STS, aromatase and erbB2 in tumor tissues increased as breast cancer progressed. The tumoral mRNA expression levels of STS, estrogen receptor β, and erbB2 in patients with recurrence were higher than those in patients without recurrence. Upregulation of STS expression plays an important role in tumor progression of human breast cancer and is considered to be responsible for estrogen production in tumor and surrounding tissues.  相似文献   
4.
《Cell reports》2020,30(7):2065-2074.e4
  1. Download : Download high-res image (155KB)
  2. Download : Download full-size image
  相似文献   
5.
The injection of α-MSH or of one of its analogues ([Nle4-D.Phe7] α-MSH4–10) reduced, in vivo, the release of two cytokines (IL-1α and TNFα) involved in inflammation. The inflammatory state was induced in BALB/c mice by intraperitoneal injection of a sublethal dose of lipopolysaccharides (LPS). The assay of these cytokines by ELISA showed a reduction of 20% with α-MSH and between 30 and 60% with the α-MSH analogue. The α-MSH or the analogue was administered in one of two ways: intravenously or subcutaneously. The most efficient method seemed to be the subcutaneous one because it improved the activity 10,000 times more than the intravenous method. Moreover, the analogue induced a regression of mortality in the animals treated by the intravenous method. Our results show that α-MSH and one of its analogues inhibit IL-1α and TNFα, and can be used as anti-inflammatory molecules.  相似文献   
6.
Peripheral-type benzodiazepine binding sites (PTBBS) are markedly increased in the injured CNS. Astrocytes appear to be the primary cell type which express increased PTBBS. Because certain cytokines within the injured CNS are potent mitogens for astrocytes, we examined the effects of two such cytokines, interleukin (IL)-1 beta and tumor necrosis factor (TNF), on PTBBS in cultured astrocytes using [3H]Ro 5-4864 as the specific ligand. Purified cultures of either polygonal or process-bearing astrocytes were prepared from neonatal rat cerebral hemispheres. At a concentration of 1.8 nM, specific binding of the radioactive ligand to polygonal astrocytes reached equilibrium within 60 min and was half-maximal by 5-10 min. By contrast, specific binding to process-bearing astrocytes barely exceeded background levels. IL-1 and TNF increased PTBBS within polygonal astrocytes in both dose- and time-dependent manners. At 10-50 ng/ml, IL-1 beta and TNF-alpha elevated [3H]Ro 5-4864 binding in polygonal astrocyte cultures 65 and 87%, respectively, above the level in control cultures. However, no changes in PTBBS were seen within polygonal astrocytes after IL-2 treatment. Scatchard analysis of saturation binding experiments suggested that the increase in PTBBS promoted by TNF was due to an increased number of binding sites present in polygonal astrocytes and not due to an increase in receptor affinity. Binding data suggested that PTBBS within cultures of process-bearing astrocytes were virtually absent irrespective of the treatment. These in vitro data suggest that certain cytokines found in the injured brain may be involved in up-regulating PTBBS within a particular subtype of astrocyte.  相似文献   
7.
《Cell》2022,185(20):3753-3769.e18
  1. Download : Download high-res image (311KB)
  2. Download : Download full-size image
  相似文献   
8.
αVβ3, a broadly distributed member of the integrin family of adhesion receptors, has been implicated in a variety of physiological and pathophysiological events, including control of bone density, angiogenesis, apoptosis, tumor growth, and metastasis. Recently, it has been shown that activation of αVβ3, its transition from a low- to a high-affinity/avidity state, influences its recognition of certain ligands. Bone sialoprotein (BSP) is recognized as an important ligand for αVβ3 in processes ranging from bone formation to the homing of metastatic tumor cells. Here, the influence of αVβ3 activation on the adhesion and migration of relevant cells to BSP has been examined. Stimulation of lymphoblastoid, osteoblastoid, and human umbilical vein endothelial cells (HUVEC) with PMA or Mn2+ markedly enhanced αVβ3-dependent adhesion to BSP. αVβ3-mediated migration of HUVEC or osteoblastic cells to BSP was substantially enhanced by stimulation, demonstrating that αVβ3 activation enhances both adhesive and migratory responses. However, adhesion and/or migration of certain tumor cell lines, including M21 melanoma and MDA MB435 and SKBR3 breast carcinoma cell lines, to BSP was constitutively high and was not augmented by αVβ3-activating stimuli. Inhibitors of the intracellular signaling molecules, phosphatidylinositol 3-kinase with wortmannin, hsp90-dependent kinases with geldanamycin, and calpain with calpeptin, but not MAPKK with PD98059, reduced the high spontaneous adhesion and migration of the M21 cells to BSP, consistent with the constitutive activation of the receptor on these tumor cells. These results indicate that the activation state of αVβ3 can regulate cell migration and adhesion to BSP and, by extension, to other ligands of this receptor. The constitutive activation of αVβ3 on neoplastic cells may contribute to tumor growth and metastatic potential.  相似文献   
9.
The limited proteolysis of human recombinant TNF- by trypsin yields two stable products resulting from cleavage after Arg6 and Arg44. In solution these two products remain associated together in a trimer with a Stokes' radius slightly greater than the radius of intact TNF- and, therefore, could not be separated from each other under nondenaturing conditions. This limited digest retains at least 20% of the activity of the original TNF- sample, and has a tertiary structure that is similar to that of the native protein by circular dichroism. On the other hand, incorrectly folded, inactive TNF- undergoes extensive digestion following similar treatment with trypsin. These results indicate that the active form of TNF- has a tight core structure which is maintained afterN-terminal cleavage and removal.  相似文献   
10.
The effect of persistent measles virus infection on the expression of major histocompatibility complex (MHC) class I antigens was studied. Mouse neuroblastoma cells C1300, clone NS20Y, were persistently infected with the Edmonston strain of measles virus. The persistently infected cell line, NS20Y/MS, expressed augmented levels of both H-2Kk and H-2Dd MHC class I glycoproteins. Activation of two interferon(IFN)-induced enzymes, known to be part of the IFN system: (2–5)oligoadenylate synthetase and double-stranded-RNA-activated protein kinase, was detected. Measles-virus-infected cells elicited cytotoxic T lymphocytes that recognized and lysed virus-infected and uninfected neuroblastoma cells in an H-2-restricted fashion. Furthermore, immunization of mice with persistently infected cells conferred resistance to tumor growth after challenge with the highly malignant NS20Y cells. The rationale for using measles virus for immunotherapy is that most patients develop lifelong immunity after recovery or vaccination from this infection. Patients developing cancer are likely to have memory cells. A secondary response induced by measles-virus-infected cells may therefore induce an efficient immune response against non-infected tumour cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号