首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   1篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
  2015年   1篇
  2014年   2篇
  2012年   5篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  1997年   1篇
排序方式: 共有23条查询结果,搜索用时 31 毫秒
1.
We exploit the concept of using hydrogen bonds to link multiple ligands for maintaining simultaneous interactions with polyvalent binding sites. This approach is demonstrated by the syntheses and evaluation of pseudo-bivalent ligands as potent inhibitors of human β-tryptase.  相似文献   
2.
We describe herein the design, synthesis, and in vitro biochemical evaluation of a series of potent, time-dependent inhibitors of the mast cell-derived serine protease tryptase. The inhibitors were readily obtained by attaching various heterocyclic thiols, as well as a basic primary specificity residue P1, to the 1,2,5-thiadiazolidin-3-one 1,1-dioxide scaffold. The inhibitors were found to be devoid of any inhibitory activity toward a neutral (elastase) or cysteine (papain) protease, however they were also fairly efficient inhibitors of bovine trypsin. The differential inhibition observed with trypsin suggests that enzyme selectivity can be optimized by exploiting differences in the S′ subsites of the two enzymes. The results described herein demonstrate the versatility of the heterocyclic scaffold in fashioning mechanism-based inhibitors of neutral, basic, and acidic (chymo)trypsin-like serine proteases.  相似文献   
3.
虎纹蛙消化道肥大细胞类胰蛋白酶免疫组化研究   总被引:1,自引:0,他引:1  
研究采用小鼠抗人肥大细胞类胰蛋白酶单克隆抗体AA1,应用ElivisionTM plus免疫组化染色法对虎纹蛙(Rana tigrina rugulosa)消化道组织中类胰蛋白酶阳性肥大细胞存在的可能性进行研究。研究发现单克隆抗体AAl可与中性缓冲福马林液固定的虎纹蛙组织的肥大细胞获得良好的交叉反应,类胰蛋白酶阳性细胞胞浆染成棕黄色,证实虎纹蛙肥大细胞胞浆颗粒中也存在类胰蛋白酶。虎纹蛙组织中AA1免疫染色阳性细胞的分布,与AB/SO和改良甲苯胺兰染色阳性细胞的分布存在较大的差异:虎纹蛙类胰蛋白酶阳性细胞数量很少,且阳性反应比人胃癌间质肥大细胞弱,主要见于黏膜型肥大细胞(MMC)分布区域,如消化道黏膜上皮下方和固有层,少量分布于肠绒毛基底部及食管腺和胃腺周围。而在结缔组织型肥大细胞(CTMC)分布区域,如消化道黏膜下层结缔组织中却未见类胰蛋白酶阳性细胞。AB/SO和改良甲苯胺兰染色阳性细胞数量多,广泛分布于消化道黏膜固有层、黏膜下层、腺体之间、肌间及外膜结缔组织,说明并不是所有的虎纹蛙肥大细胞都含有类胰蛋白酶。很有可能是虎纹蛙MMC中含有类胰蛋白酶,而CTMC中不含类胰蛋白酶。虎纹蛙类胰蛋白酶阳性细胞数量很少,且阳性反应比人胃癌间质肥大细胞弱,说明虎纹蛙肥大细胞胞浆颗粒类胰蛋白酶含量较少,虎纹蛙属于低等脊椎动物,可能与生物进化水平较低有关,有待进一步研究。  相似文献   
4.
目的:探讨肥大细胞(mast cell,MC)及类胰蛋白酶(tryptase)与甲状腺肿瘤微血管密度(microvessel density,MVD)的相关性及其对甲状腺癌发生发展的影响。方法:采用甲苯胺蓝组织化学染色和PV免疫组织化学染色对116例甲状腺癌、56例甲状腺腺瘤和10例正常甲状腺组织中MC和tryptase及其CD31的表达进行了检测;对MC和tryptase与MVD的关系进行了统计学分析。结果:甲状腺肿瘤中MC的数量和tryptase阳性表达高于正常甲状腺,而且与肿瘤的类型有关(P<0.01);Spearman等级相关分析显示各组甲状腺组织MC数量和tryptase表达与MVD呈正相关(r=0.900,r=0.636,P<0.05)。结论:MC及其分泌的tryptase有促进血管新生的作用,因而可促进甲状腺肿瘤的浸润和转移。  相似文献   
5.

Background

The pathogenesis of glioma is unclear. The disturbance of the apoptosis process plays a critical role in glioma growth. Factors regulating the apoptosis process are to be further understood. This study aims to investigate the role of protease activated receptor-2 (PAR2) in regulation the apoptosis process in glioma cells.

Results

The results showed that U87 cells and human glioma tissue expressed PAR2. Exposure to tryptase, or the PAR2 active peptide, increased STAT3 phosphorylation in the radiated U87 cells, reduced U87 cell apoptosis, suppressed the expression of p53 in U87 cells.

Conclusions

Activation of PAR2 can reduce the radiated U87 cell apoptosis via modulating the expression of p53. The results implicate that PAR2 may be a novel therapeutic target in the treatment of glioma.  相似文献   
6.
Transforming growth factor β (TGFβ) is a key remodelling factor in asthma. It is produced as a latent complex and the main limiting step in TGFβ bioavailability is its activation. Mast cell tryptase has been shown to stimulate the release of functionally active TGFβ from human airway smooth muscle (ASM) cells [P. Berger, P.O. Girodet, H. Begueret, O. Ousova, D.W. Perng, R. Marthan, A.F. Walls, J.M. Tunon de Lara, Tryptase-stimulated human airway smooth muscle cells induce cytokine synthesis and mast cell chemotaxis, FASEB J. 17 (2003) 2139-2141]. The aim of this study was to determine if tryptase could cause TGFβ activation as well as expression in ASM cells via its receptor, proteinase-activated receptor 2 (PAR2). Tryptase caused TGFβ activation without affecting levels of total TGFβ. This effect was inhibited by the selective tryptase inhibitor FUT175 and leupeptin but not mimicked by the PAR2 activating peptide SLIGKV-NH2. Furthermore, the ASM cells used in the study did not express PAR2. The results indicate that tryptase activates TGFβ via a PAR2-independent proteolytic mechanism in human ASM cells and may help understanding the role of tryptase in asthma.  相似文献   
7.
Tryptic enzymes such as tryptase, trypsin and thrombin are reportedly able to alter neutrophil behavior. However, little is known of the influence of these proteinases on lactoferrin or IL-8 release from neutrophils. In the present study, we investigated the effects of tryptase, trypsin, thrombin and elastase, and agonist peptides of PAR-1 SFLLR-NH(2) and PAR-2 SLIGKV-NH(2) and tc-LIGRLO-NH(2) on lactoferrin and IL-8 release from highly purified human neutrophils. Flow cytometry shows CD16(+) neutrophils express PAR-1 and PAR-2, but not PAR-3 and PAR-4 proteins. RT-PCR analysis reveals that neutrophils express only PAR-2 genes. Tryptase and trypsin, but not thrombin and elastase, induced significant lactoferrin and IL-8 secretion from neutrophils. SLIGKV-NH(2) and tc-LIGRLO-NH(2), but not SFLLR-NH(2), also stimulated lactoferrin and IL-8 secretion from neutrophils. In conclusion, only a proportion of neutrophils express PAR-1 and/or PAR-2. Tryptase and trypsin-induced lactoferrin and IL-8 secretion from neutrophils most likely occur through activation of PAR-2.  相似文献   
8.
Accumulated mast cells in atherosclerotic plaques secrete a high level of tryptase that may participate in the pathogenesis of atherosclerotic disease by diverse pathways. However, the role of tryptase in the lipid metabolism of macrophages remains to be defined. In the present study, we found that the addition of tryptase into THP-1-derived macrophages increased both intracellular lipid accumulation and total cholesterol level. Tryptase promoting foam cell formation was also observed by transmission electron microscope. These effects were resisted by APC366, a selective inhibitor of mast cell tryptase. Tryptase dramatically resisted 22RHC induced activation of LXRα protein expression, which can be reversed by SAM-11 (a PAR-2-specific neutralizing antibody) and reduced LXRα, ABCG1, ABCA1 and SREBP-1c mRNA levels and ABCG1 protein level, which were all blocked by APC366. PAR-2 agonist also redeemed 22RHC stimulation to activate LXRα, ABCG1 protein expression, and mRNA levels of LXRα and its target genes in both THP-1-derived macrophages and primary human monocyte-derived macrophages. In primary macrophages that were first transfected with PAR-2 siRNA and then treated with tryptase, both the ABCG1 protein level and mRNA levels of LXRα and ABCG1 were higher than those in the control siRNA-treated cells. Taken together, our data clarified the PAR-2 expression of human macrophages and suggested that tryptase might promote lipid accumulation in macrophages and foam cell formation by suppressing LXRα activation via PAR-2/LXRα/LXRα target genes signaling pathway. This investigation sheds a new light on the role of tryptase in foam cell formation and pathogenesis of atherosclerosis.  相似文献   
9.

Background

One of the greatest challenges in cardiovascular medicine is to define the best tools for performing an accurate risk stratification for the recurrence of ischemic events in acute coronary syndrome (ACS) patients.

Methods

We followed 65 ACS patients enrolled in a previous pilot study for 2 years after being discharged, focusing on the occurrence of major adverse cardiovascular events (MACE).The relationship between serum tryptase levels on admission, SYNergy between percutaneous coronary intervention with the TAXUS drug-eluting stent and the cardiac surgery score (SX-score), cardiovascular complexity and MACE at 2 years follow-up were analyzed.

Results

The ACS population was divided in two groups: patients with MACE (n = 23) and patients without MACE (n = 42).The tryptase measurement at admission (T0) and at discharge (T3) and SX-score were higher in patients who experienced MACE than in those without (p = 0.0001, p < 0.0001 and p = 0.006, respectively). Conversely, we found no significant association between MACE and C-reactive protein (CRP), and between MACE and maximum level of high-sensitivity troponin (hs-Tn) values.Among all patients with MACE, 96% belonged to the group that presented with cardiovascular complexity at the beginning of ACS index admission (p < 0.0001).The predictive accuracy of serum tryptase for MACE at follow up set at the cut-off point of 4.95 ng/ml at T0 and of 5.2 ng/ml at T3. Interestingly, patients with both the above cut-off tryptase values at T0 and at T3 presented a 1320% increase in the odds of developing MACE (p < 0.0001).

Conclusion

In ACS patients, serum tryptase measured during index admission is significantly correlated to the development of MACE up to 2 years, demonstrating a possible long-term prognostic role of this biomarker.

Electronic supplementary material

The online version of this article (doi:10.1186/s12948-015-0013-0) contains supplementary material, which is available to authorized users.  相似文献   
10.
A hallmark feature of mast cells is their high content of cytoplasmic secretory granules filled with various preformed compounds, including proteases of tryptase-, chymase-, and carboxypeptidase A3 type that are electrostatically bound to serglycin proteoglycan. Apart from participating in extracellular processes, serglycin proteoglycan and one of its associated proteases, tryptase, are known to regulate cell death by promoting apoptosis over necrosis. Here we sought to outline the underlying mechanism and identify core histones as primary proteolytic targets for the serglycin-tryptase axis. During the cell death process, tryptase was found to relocalize from granules into the cytosol and nucleus, and it was found that the absence of tryptase was associated with a pronounced accumulation of core histones both in the cytosol and in the nucleus. Intriguingly, tryptase deficiency resulted in defective proteolytic modification of core histones even at baseline conditions, i.e. in the absence of cytotoxic agent, suggesting that tryptase has a homeostatic impact on nuclear events. Indeed, tryptase was found in the nucleus of viable cells and was shown to cleave core histones in their N-terminal tail. Moreover, it was shown that the absence of the serglycin-tryptase axis resulted in altered chromatin composition. Together, these findings implicate histone proteolysis through a secretory granule-derived serglycin-tryptase axis as a novel principle for histone modification, during both cell homeostasis and cell death.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号