首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2397篇
  免费   94篇
  国内免费   88篇
  2023年   7篇
  2022年   4篇
  2021年   15篇
  2020年   24篇
  2019年   25篇
  2018年   17篇
  2017年   26篇
  2016年   28篇
  2015年   42篇
  2014年   37篇
  2013年   59篇
  2012年   29篇
  2011年   34篇
  2010年   29篇
  2009年   68篇
  2008年   110篇
  2007年   123篇
  2006年   107篇
  2005年   90篇
  2004年   105篇
  2003年   105篇
  2002年   108篇
  2001年   118篇
  2000年   99篇
  1999年   112篇
  1998年   87篇
  1997年   108篇
  1996年   82篇
  1995年   93篇
  1994年   68篇
  1993年   93篇
  1992年   75篇
  1991年   62篇
  1990年   57篇
  1989年   59篇
  1988年   40篇
  1987年   35篇
  1986年   34篇
  1985年   44篇
  1984年   39篇
  1983年   16篇
  1982年   25篇
  1981年   16篇
  1980年   9篇
  1979年   4篇
  1978年   4篇
  1977年   3篇
  1972年   5篇
排序方式: 共有2579条查询结果,搜索用时 15 毫秒
1.
In the developing wheat grain, photosynthate is transferred longitudinally along the crease phloem and then laterally into the endosperm cavity through the crease vascular parenchyma, pigment strand and nucellar projection. In order to clarify this cellular pathway of photosynthate unloading, and hence the controlling mechanism of grain filling, the potential for symplastic and apoplastic transfer was examined through structural and histochemical studies on these tissue types. It was found that cells in the crease region from the phloem to the nucellar projection are interconnected by numerous plasmodesmata and have dense cytoplasm with abundant mitochondria. Histochemical studies confirmed that, at the stage of grain development studied, an apoplastic barrier exists in the cell walls of the pigment strand. This barrier is composed of lignin, phenolics and suberin. The potential capacity for symplastic transfer, determined by measuring plasmodesmatal frequencies and computing potential sucrose fluxes through these plasmodesmata, indicated that there is sufficient plasmodesmatal cross-sectional area to support symplastic unloading of photosynthate at the rate required for normal grain growth. The potential capacity for membrane transport of sucrose to the apoplast was assessed by measuring plasma membrane surface areas of the various cell types and computing potential plasma membrane fluxes of sucrose. These fluxes indicated that the combined plasma membrane surface areas of the sieve element–companion cell (se–cc) complexes, vascular parenchyma and pigment strand are not sufficient to allow sucrose transfer to the apoplast at the observed rates. In contrast, the wall ingrowths of the transfer cells in the nucellar projection amplify the membrane surface area up to 22-fold, supporting the observed rates of sucrose transfer into the endosperm cavity. We conclude that photosynthate moves via the symplast from the se–cc complexes to the nucellar projection transfer cells, from where it is transferred across the plasma membrane into the endosperm cavity. The apoplastic barrier in the pigment strand is considered to restrict solute movement to the symplast and block apoplastic solute exchange between maternal and embryonic tissues. The implications of this cellular pathway in relation to the control of photosynthate transfer in the developing grain are discussed.  相似文献   
2.
Transport of zinc and manganese to developing wheat grains   总被引:11,自引:0,他引:11  
An understanding of the transport pathway used by Zn and Mn to enter developing grains may allow measures to increase the Zn and Mn content of wheat grain grown on Zn/Mn deficient soils. For this reason, transport of Zn and Mn into developing grains of wheat ( Triticum aestivum L. cv. Aroona) was investigated. Detached ears (18–22 days post-anthesis) were cultured for 48 h in a solution containing 185 kBq of 65Zn and 185 kBq of 54Mn. Transport of 65Zn to the grain was unaffected by removal of glumes but was slightly reduced after the lemma was removed. Heat girdling the peduncle slightly reduced the amount of 65Zn transported to the grain, whilst heat girdling the rachilla reduced transport of 65Zn to the grain to a greater degree, suggesting phloem transport to the rachilla. The transport inhibitor CCCP (carbonyl cyanide m -chlorophenyl hydrazone) blocked 65Zn transport to grain but not to lemma and glumes. Removing glumes and lemma and heat girdling the peduncle did not affect transport of 54Mn, but transport was slightly affected by heat girdling the rachilla, indicating xylem transport. CCCP blocked transport of 54Mn into the grain but not to lemma and glumes. It was concluded that xylem-to-phloem transfer of Zn occurs in the rachis and to a lesser extent in peduncle and lemma. The results suggest that the lemma may be an important site for phloem loading when the concentration of Zn within the xylem is high. The data also suggest that Mn was predominantly translocated to the spikelets in the xylem, but that transport to the grain was dependent upon membrane transport before entering the grain. Phloem loading of Mn into the grain vascular system may have occurred at the site of xylem discontinuity in the floral axis.  相似文献   
3.
A highly efficient method of regenerating fertile, phenotypically normal plants from shoot apex cultures of T. aestivum was developed. The hypodermal layer (L2) of the vegetative apex containing germ line precursor cells could be located with bright field microscopy and targeted for microinjection. Fluorescently labelled dextrans were used as markers to develop a microinjection procedure which did not disrupt nuclear or cytoplasmic structure. This procedure was used to inject plasmid DNA into L2 cells. Capillary microinjection did not shear the plasmid DNA and delivery of DNA was confirmed by polymerase chain reaction analysis of DNA isolated from injected apices. The significance of these findings in relation to the development of cereal transformation systems will be discussed.  相似文献   
4.
Effects of different N/P ratios on several root parameters and on net P uptake were studied in winter wheat, Triticum aestivum cv. Starke II, grown in water culture. In the First experiment N/P ratios of (0/4, 2/3, 4/2, 6/1 and 8/0) were used, and plants were harvested at age 3, 5, 8, 11 and 14 days. In the second experiment N/P ratios of 6/1, 10/1, 15/1, 17/1, 20/1 and 25/1 were applied at two different N,P levels. Root length and number were determined using a digitizer connected to a computer. In the first experiment. the 6/1 N/P ratio gave the largest plants at day 14, and growth decreased with decreasing N/P ratio, The same pattern was found fur lateral root length and root number (seminal and lateral). In the second experiment the root weights decreased with increasing N/P ratio within each level. Lateral root number and overall length decreased with increasing N/P ratio at both levels as did the average lateral root length at the high N,P level. At the low N.P level, average lateral root length was about the same at all N/P ratios. Increasing the N/P ratio increased net uptake of P at the low N,P level, but decreased net P uptake at the high N,P level. Net P uptake increased with increasing P concentration in the roots and then decreased with further increase in P concentration. Net P uptake based on calculated root length [m (g root)−1] showed no significant deviation from weight-based uptake plots. The effect of N and P on root structure is discussed as well as the interaction of N and P in P uptake. The relevance of a proper basis for expressing root activity is stressed.  相似文献   
5.
The long-term role of photorespiration was investigated by comparing growth, development, gas exchange characteristics and mineral nutrition of a wheat crop ( Triticum aestivum L. cv. Courtot) cultivated in a culture chamber during a life cycle, either in 4% O2 or in normal O2 Low O2 pressure reduced photorespiration, but CO2 was controlled so that net photosynthesis remained the same as in the control crop. The growth and development of the low O2 crop was slowed down. Ear appearance was 16 days late, but the rate of tillering was the same as in the control and was maintained longer so that the final number of tillers was doubled. Pigment, ribulose bisphosphate carboxylase (EC 4.1.1.39) and soluble sugar contents were similar. The response of photosynthesis to CO2 and O2 was not appreciably changed by the low O2 treatment. There was almost no seed formation, and the senescence of the leaves was delayed. It appears that in non-stress conditions most of the photorespiration can be suppressed without damage to the photosynthetic apparatus. Retardation of development and inhibition of reproduction are likely due to other effects of O2.  相似文献   
6.
Ice crystal formation temperature was determined in the region of the crown in one group of 7-day-old intact unhardened high-salt plants of winter wheat (Triticum aestivum L. cv. Weibulls Starke II) with TA (Thermal Analysis) and DTA (Differential Thermal Analysis) methods. After exposure of another group of plants, grown for the first 7 days in the same way as the first group, to various sub-zero temperatures (-1 to 5°C), influx in roots of Rb+(86Rb+) and Ca2+(45Ca2+) and contents of K+ and Ca2+ were determined at intervals during 7 days of recovery. Ice crystal formation in the crown tissue was probably extracellular and took place at about -4°C. There was a large loss of K+ from the roots after treatment at sub-zero temperatures. This loss increased as the temperature of the sub-zero treatment decreased. During recovery, roots of plants exposed to -1, -2 and -3°C gradually reabsorbed K+. Reabsorption of K+ in roots of plants exposed to -4°C was greatly impaired. Rb+ influx decreased and Ca2+ influx increased after sub-zero temperature treatments of the plants. Active Rb+ influx mechanisms and active extrusion of Ca2+ were impaired or irreversibly damaged by the exposure. While Rb+ influx mechanisms were apparently repaired during recovery in plants exposed to temperatures down to -3°C, Ca2+ extrusion mechanisms were not. The temperature for ice crystal formation in the region of the crown tissue coincides with the temperature at which the plants lost the ability to reabsorb K+ and to repair Rb+ influx mechanisms during the recovery period. Plants were lethally damaged at temperatures below ?4°C.  相似文献   
7.
Summary Using restriction enzyme digests of genomic DNA extracted from the leaves of 25 hexaploid wheat (Triticum aestivum L. em. Thell.) cultivars and their hybrids, restriction fragment length polymorphisms of the spacer DNA which separates the ribosomal-RNA genes have been examined. (From one to three thousand of these genes are borne on chromosomes 1B and 6B of hexaploid wheat). The data show that there are three distinct alleles of the 1B locus, designated Nor-B1a, Nor-B1b, and Nor-B1c, and at least five allelic variants of the 6B locus, designated Nor-B2a, Nor-B2b, Nor-B2c, Nor-B2d, and Nor-B2e. A further, previously reported allele on 6B has been named Nor-B2f. Chromosome 5D has only one allelic variant, Nor-D3. Whereas the major spacer variants of the 1B alleles apparently differ by the loss or gain of one or two of the 133 bp sub-repeat units within the spacer DNA, the 6B allelic variants show major differences in their compositions and lengths. This may be related to the greater number of rDNA repeat units at this locus. The practical implications of these differences and their application to wheat breeding are discussed.  相似文献   
8.
Abstract Previous studies suggest that high temperature stress on wheat (Triticum aestivum L.) involves root processes and acceleration of monocarpic senescence. Physiological changes in wheat roots and shoots were investigated to elucidate their relationship to injury from elevated temperatures after anthesis. Plants were grown under uniform conditions until 10 d after anthesis, when shoot/root regimes of 25°C/25°C, 25°C/35°C, 35°C/25°C and 35°C/35°C were imposed. Growth and senescence of shoots and grain were influenced more by root temperatures than by shoot temperatures. High root temperatures increased activities of protease and RNasc enzymes, and loss of chlorophyll, protein and RNA from shoots, whereas low root temperatures had opposite effects. High root temperatures appeared to induce shoot senescence directly. High shoot temperatures probably disrupted root processes, including export of cytokinins, and induced high leaf protease activity, senescence and cessation of grain development. The authors concluded that responses of wheat to high temperatures, whether of roots or shoots, are manifested as acceleration of senescence and may be mediated by roots during grain development.  相似文献   
9.
The inhibition of ammonium uptake by nitrate in wheat   总被引:1,自引:1,他引:0  
  相似文献   
10.
Summary The long-range structure of 5S rRNA gene clusters has been investigated in wheat (Triticum aestivum L.) by means of pulsed field gel electrophoresis. Using aneuploid stocks, 5S rRNA gene clusters were assigned to sites on chromosomes 1B, 1D, 513 and 5D. Cluster sizes were evaluated and the copy number of 5S DNA repeats was estimated at 4700-5200 copies for the short repeating unit (410 bp) and about 3100 copies for the long repeat (500 bp) per haploid genome. A comparison of wheat cultivars revealed extremely high levels of polymorphism in the 5S rRNA gene clusters. With one restriction enzyme digest all varieties tested gave unique banding patterns and, on a per fragment basis, 21-fold more polymorphism was detected among cultivars for 5S DNA compared to standard restriction fragment length polymorphisms (RFLPs) detected with single copy clones. Experiments with aneuploid stocks suggest that the 5S rRNA gene clusters at several chromosomal sites contribute to this polymorphism. A number of previous reports have shown that wheat cultivars are not easily distinguished by isozymes or RFLPs. The high level of variation detected in 5S rRNA gene clusters therefore offers the possibility of a sensitive fingerprinting method for wheat. 5S DNA and other macro-satellite sequences may also serve as hypervariable Mendelian markers for genetic and breeding experiments in wheat.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号