首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   1篇
  国内免费   3篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   5篇
  2013年   3篇
  2012年   4篇
  2011年   9篇
  2010年   2篇
  2009年   16篇
  2008年   7篇
  2007年   13篇
  2006年   10篇
  2005年   13篇
  2004年   10篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   5篇
  1998年   2篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1994年   3篇
  1993年   3篇
  1992年   3篇
  1981年   1篇
排序方式: 共有137条查询结果,搜索用时 15 毫秒
1.
In many sports, athletes perform motor tasks that simultaneously require both speed and accuracy for success, such as kicking a ball. Because of the biomechanical trade-off between speed and accuracy, athletes must balance these competing demands. Modelling the optimal compromise between speed and accuracy requires one to quantify how task speed affects the dispersion around a target, a level of experimental detail not previously addressed. Using soccer penalties as a system, we measured two-dimensional kicking error over a range of speeds, target heights, and kicking techniques. Twenty experienced soccer players executed a total of 8466 kicks at two targets (high and low). Players kicked with the side of their foot or the instep at ball speeds ranging from 40% to 100% of their maximum. The inaccuracy of kicks was measured in horizontal and vertical dimensions. For both horizontal and vertical inaccuracy, variance increased as a power function of speed, whose parameter values depended on the combination of kicking technique and target height. Kicking precision was greater when aiming at a low target compared to a high target. Side-foot kicks were more accurate than instep kicks. The centre of the dispersion of shots shifted as a function of speed. An analysis of the covariance between horizontal and vertical error revealed right-footed kickers tended to miss below and to the left of the target or above and to the right, while left-footed kickers tended along the reflected axis. Our analysis provides relationships needed to model the optimal strategy for penalty kickers.  相似文献   
2.
The migratory locust (Locusta migratoria) exhibits clear phenotypic plasticity depending on its population density. Previous studies have explored the molecular mechanisms of body colour, behavior, immunity, and metabolism between high population density gregarious (G) and low population density solitarious (S) locusts. However, the molecular mechanisms underlying differences in reproductive traits remain unknown. G locusts reach sexual maturation much faster and lay larger eggs compared with S locusts. The traits of G locusts decreased significantly with isolation, whereas those of S locusts increased with crowding. Analysis of gene expression in female adults indicated that syntaxin 1A (Syx1A) was expressed significantly higher in G locusts than in S locusts. After silencing Syx1A expression in G locusts by RNA interference (RNAi), their sexual maturity rate and progeny egg size changed towards those of S locusts. Similarly, increment in the traits of S locusts with crowding was blocked by Syx1A interference. Changes in the traits were also confirmed by decrease in the level of vitellogenin, which is regulated by Syx1A. In conclusion, plasticity of the sexual maturity rate and progeny egg size of G and S locusts, which is beneficial for locusts to adapt to environmental changes, is regulated by Syx1A.  相似文献   
3.
觅食活动是动物生存和繁殖所必需的基本的活动,受个体生理状态(如饥饿)和环境状况(如捕食、食物可利用性)时空变化的影响,能量状态-风险分配假说指出,动物在应对不同风险时会优化觅食和反捕食努力的时间和能量分配。然而,有关啮齿动物觅食决策的能量状态-捕食风险分配假说的研究结论尚不统一。本研究在野外实验室以艾鼬(Mustela eversmannii)气味作为捕食风险刺激源,以非捕食者(马)气味源作为对照,首先通过Y型观测箱检验雌性饥饿长爪沙鼠(Meriones unguiculatus)对捕食者气味的辨别能力(Wilcoxon 秩检验);在此基础上通过中立场行为观测箱分别测定饥饿雌鼠在“有食物和天敌气味源”与“有食物和非天敌气味源”环境下的觅食活动,采用Mann-Whitney Z检验比较两者间的行为差异,以验证急性捕食风险限制饥饿沙鼠觅食活动的假设,并探讨动物在饥饿风险与捕食风险共存情况下的觅食行为对策。结果显示,(1)长爪沙鼠对天敌气味反应明显,厌恶和回避有较高潜在捕食风险的空间;(2)虽然觅食潜伏期在捕食风险存在时有所增加,但急性捕食风险并未影响饥饿沙鼠的觅食频次,沙鼠通过缩短每次觅食的持续时间来应对捕食风险;与此同时,(3)饥饿沙鼠在急性捕食风险条件下对环境探究的次数明显增加,一定程度上提高反捕食努力,且自我修饰表现显著,以缓释捕食压力的恐惧效应。这些结果表明,急性捕食风险不能完全抑制饥饿沙鼠的觅食努力,在有捕食风险情况下,饥饿的长爪沙鼠会权衡觅食获取能量和避免捕食的收益和代价,优化觅食策略。本研究结果支持能量状态-风险分配假说关于在短期高风险情况下反捕食努力分配更多,但当动物在饥饿风险持续时间比例显著增加时,动物最终也必须在高风险情况下觅食的预测,也反映了长爪沙鼠对食物资源不可预测及捕食风险高的干旱半干旱荒漠环境的行为适应对策。  相似文献   
4.
Accounting for morphological plasticity in phytoplankton populations is relevant for taxonomy, systematic/evolutionary, and ecological studies. In this work, the green alga Pediastrum tetras (Ehrenberg) Ralfs was used to describe the variation in population size structure over its growth cycle and to analyze responses to changes in biotic and abiotic factors. Pediastrum cultures reached a final stable concentration in approximately 10 days. This density (8 × 105 cells ml−1) remained stable for at least another 13 days and the intrinsic growth rate was 0.24 ± 0.01 day−1. In the exponential phase, the relative number of single cells and the proportion of large cells (with vesicles inside) within colonies increased. When density peaked, a relative increase of single cells as well as small cells in new colonies took place. Finally, during the stationary phase, the trend reversed: fewer single cells and a larger cell size (without vesicles) were observed. Results indicated that nutrient supply could affect population structure, diminishing the proportion of eight-cell colonies. Daphnia magna Straus significantly reduced the Pediastrum population density due to predation, and this led to a significant decrease in the density of the largest colonies. In addition, info-chemicals induced a slight increase in the density of the largest colonies compared to the control treatment. Our study suggests a possible trade-off in P. tetras colonial size in natural environments: during the stationary growth period in a lake, Pediastrum populations tend to increase in size for efficient use of nutrients, while they decrease in size in the presence of herbivores. Handling editor: J. Padisak  相似文献   
5.
6.
Little is known about reproductive trade-offs in African amphibians, but such data, particularly in the form of quantitative measurements, are a key for investigating life history evolution. Here we compile and analyze known data on African bufonids from published material and new data from preserved museum specimens, to investigate interspecific patterns of egg and clutch sizes variation. Our data is a composite of mixed sources, including ova data from dissected females and laid clutches from observations in the field. Our study shows that, as body size increases, clutch size increases but egg size decreases, and when correcting for body size, egg size is inversely correlated with clutch size. These parameter interactions however, are different for different reproductive modes. In free-swimming larval developing species, the same trends are recovered, but for lecithotrophic viviparous species no significant correlations could be recovered for clutch size and body size nor for the trade-off between clutch size and egg size, and egg size is positively related to body size. The egg size of Nimbaphrynoides occidentalis (Angel, 1943) is a clear outlier, which may be due to its matrotrophic viviparous reproduction. In addition, we observed no statistical difference between ova data collected from dissections and laid clutch data from field observations, which suggests that such a mixed dataset has utility in comparative analyses.  相似文献   
7.
8.
The evolution of pathogen virulence in natural populations has conventionally been considered as a result of selection caused by the interactions of the host with its pathogen(s). The host population, however, is generally embedded in complex trophic interactions with other populations in the community, in particular, intensive predation on the infected host can increase its mortality, and this can affect the course of virulence evolution. Reciprocally, in the long run, the evolution of virulence within an infected host can affect the patterns of population dynamics of a predator consuming the host (e.g. resulting in large amplitude oscillations, causing a severe drop in the population size, etc.). Surprisingly, neither the effect of predation on the evolution of virulence within a host, nor the influence of the evolution of virulence upon the consumer's dynamics has been addressed in the literature yet. In this paper, we consider a classical S-I ecoepidemiological model in which the infected host is consumed by a predator. We are particularly interested in the evolutionarily stable virulence of the pathogen in the model and its dependence upon ecologically relevant parameters. We show that predation can prominently shift the evolutionarily stable virulence towards more severe strains as compared to the same system without predation. We demonstrate that the evolution of virulence can result in a succession of dynamical regimes and can even lead to the extinction of the predator in the long run. The presence of a predator can indirectly affect the evolution within its prey since the evolutionarily stable virulence becomes a function of the prey growth rate, which would not be the case in a predator-free system. We find that the evolutionarily stable virulence largely depends on the carrying capacity K of the prey in a non-monotonous way. The model also predicts that in an eutrophic environment the shift of virulence towards evolutionarily stable benign strains can cause demographically stochastic evolutionary suicide, resulting in the extinction of both species, thus artificially maintaining severe strains of pathogen can enhance the persistence of both species.  相似文献   
9.
In this paper, with the method of adaptive dynamics and geometric technique, we investigate the adaptive evolution of foraging-related phenotypic traits in a predator-prey community with trade-off structure. Specialization on one prey type is assumed to go at the expense of specialization on another. First, we identify the ecological and evolutionary conditions that allow for evolutionary branching in predator phenotype. Generally, if there is a small switching cost near the singular strategy, then this singular strategy is an evolutionary branching point, in which predator population will change from monomorphism to dimorphism. Second, we find that if the trade-off curve is globally convex, predator population eventually branches into two extreme specialists, each completely specializing on a particular prey species. However, if the trade-off curve is concave-convex-concave, after branching in predator phenotype, the two predator species will evolve to an evolutionarily stable dimorphism at which they can continue to coexist. The analysis reveals that an attractive dimorphism will always be evolutionarily stable and that no further branching is possible under this model.  相似文献   
10.
When faced with limited resources, organisms have to determine how to allocate their resources to maximize fitness. In the presence of parasites, hosts may be selected for their ability to balance between the two competing needs of reproduction and immunity. These decisions can have consequences not only for host fitness, but also for the ability of parasites to persist within the population, and for the competitive dynamics between different host species. We develop two mathematical models to investigate how resource allocation strategies evolve at both population and metapopulation levels. The evolutionarily stable strategy (ESS) at the population level is a balanced investment between reproduction and immunity that maintains parasites, even though the host has the capacity to eliminate parasites. The host exhibiting the ESS can always invade other host populations through parasite-mediated competition, effectively using the parasites as biological weapons. At the metapopulation level, the dominant strategy is sometimes different from the population-level ESS, and depends on the ratio of local extinction rate to host colonization rate. This study may help to explain why parasites are as common as they are, and can serve as a modeling framework for investigating parasite-mediated ecological invasions. Furthermore, this work highlights the possibility that the ‘introduction of enemies’ process may facilitate species invasion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号