首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   999篇
  免费   118篇
  国内免费   56篇
  1173篇
  2023年   24篇
  2022年   35篇
  2021年   37篇
  2020年   39篇
  2019年   31篇
  2018年   54篇
  2017年   54篇
  2016年   31篇
  2015年   40篇
  2014年   67篇
  2013年   62篇
  2012年   40篇
  2011年   57篇
  2010年   36篇
  2009年   51篇
  2008年   53篇
  2007年   60篇
  2006年   46篇
  2005年   38篇
  2004年   30篇
  2003年   33篇
  2002年   20篇
  2001年   14篇
  2000年   11篇
  1999年   11篇
  1998年   11篇
  1997年   10篇
  1996年   12篇
  1995年   3篇
  1994年   5篇
  1993年   3篇
  1992年   6篇
  1990年   3篇
  1987年   7篇
  1986年   8篇
  1985年   9篇
  1984年   11篇
  1983年   7篇
  1982年   12篇
  1981年   11篇
  1980年   22篇
  1979年   7篇
  1978年   7篇
  1977年   3篇
  1976年   2篇
  1975年   6篇
  1974年   5篇
  1973年   6篇
  1972年   4篇
  1967年   4篇
排序方式: 共有1173条查询结果,搜索用时 15 毫秒
1.
A systematic study of Lycopodium s.l. shows that only flavones occur in the four genera Huperzia, Lepidotis, Lycopodium s.s. and Diphasium. The arrangement of these taxa is discussed on the basis of the distribution of tricin, selgin, chrysoeriol, luteolin and apigenin. The evolutionary significance of these results and the uniqueness of Lycopodium phenolic metabolism are outlined.  相似文献   
2.
Abstract Samples of rumen ingesta from two rumen-fistulated dairy cows fed grass silage-based diets were examined for numbers and types of bacteria that developed colonies on rumen fluid-agar media designated to support the growth of (a) a wide range of species, (b) cellulolytic bacteria, (c) lactate-fermenting bacteria, (d) non-fermentative bacteria. The most numerous species was Bacteroides ruminicola followed by Butyrivibrio fibrisolvens . The most abundant cellulolytic species were Eubacterium cellulosolvens and Ruminococcus flavefaciens. Megasphaera elsdenii and Selenomonas ruminantium were important lactate fermenters but an unidentified bacterium that grew poorly on maintenance medium was by far the most numerous among bacteria isolated from lactate-containing medium. One strain remained sufficiently viable to show that it fermented lactate to propionate and acetate.  相似文献   
3.
A new flavone, asplenetin, has been isolated from Launea asplenifolia and characterized as 5,7,3′,4′,5′-pentahydroxy-3-(3-methylbutyl)flavone. Its glycoside, asplenetin 5-O-neohesperidoside, is also reported.  相似文献   
4.
  1. In order to get the knowledge on the age composition of “isaza” population in Lake Biwa and the effect of population density on growth, monthly distribution of mean body length and mean body weight has been analyzed on the basis of monthly haul by “isazabiki” trawl during 1949 to 1953 and also 1960 to 1965.
  2. There is no apparent sex difference in the growth in the first and second years of life.
  3. “Isaza” population is composed of two age groups, age 0 and 1 groups (1+fish), the latter occupying by far the greater part in commercial catch.
  4. During the growth season fishes of both ages feed mainly on zooplankton, though in winter frequently take chironomid larvae, gammaridae and others in volume.
  5. The growth season falls in the period from April to October in both age groups.
  6. A considerable yearly variation occurring in growth is in close connection with the fluctuation of population density of all ages.
  7. The influence affected by the density of age 1 group is larger than that by age 0 group.
  相似文献   
5.
The effect of mixed intercropping of field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.), compared to monocrop cultivation, on the yield and crop-N dynamics was studied in a 4-yr field experiment using 15N-isotope dilution technique. Crops were grown with or without the supply of 5 g 15N-labeled N m-2. The effect of intercropping on the dry matter and N yields, competition for inorganic N among the intercrop components, symbiotic fixation in pea and N transfer from pea to barley were determined. As an average of four years the grain yields were similar in monocropped pea, monocropped and fertilized barley and the intercrop without N fertilizer supply. Nitrogen fertilization did not influence the intercrop yield, but decreased the proportion of pea in the yield. Relative yield totals (RYT) showed that the environmental sources for plant growth were used from 12 to 31% more efficiently by the intercrop than by the monocrops, and N fertilization decreased RYT-values. Intercrop yields were less stable than monocrop barley yields, but more stable than the yield of monocropped pea. Barley competed strongly for soil and fertilizer N in the intercrop, and was up to 30 times more competitive than pea for inorganic N. Consequently, barley obtained a more than proportionate share of the inorganic N in the intercrop. At maturity the total recovery of fertilizer N was not significantly different between crops, averaging 65% of the supplied N. The fertilizer N recovered in pea constituted only 9% of total fertilizer-N recovery in the intercrop. The amount of symbiotic N2 fixation in the intercrop was less than expected from its composition and the fixation in monocrop. This indicates that the competition from barley had a negative effect on the fixation, perhaps via shading. At maturity, the average amount of N2 fixation was 17.7 g N m-2 in the monocrop and 5.1 g N m-2 in the intercropped pea. A higher proportion of total N in pea was derived from N2 fixation in the intercrop than in the monocrop, on average 82% and 62%, respectively. The 15N enrichment of intercropped barley tended to be slightly lower than of monocropped barley, although not significantly. Consequently, there was no evidence for pea N being transferred to barley. The intercropping advantage in the pea-barley intercrop is mainly due to the complimentary use of soil inorganic and atmospheric N sources by the intercrop components, resulting in reduced competition for inorganic N, rather than a facilitative effect, in which symbiotically fixed N2 is made available to barley.Abbreviations MC monocrop - IC intercrop - PMC pea monocrop - BMC barley monocrop - PIC pea in intercrop - BIC barley in intercrop  相似文献   
6.
BackgroundPremature neonates might be exposed to toxic metals during their stay in the neonatal intensive care unit (NICU), which could adversely affect neurodevelopment; however, limited evidence is available. The present study was therefore designed to assess the exposure to mercury, lead, cadmium, arsenic, and manganese of preterm neonates who received total parenteral nutrition (TPN) and/or red blood cell (RBC) transfusions during their NICU stay and the risk of neurodevelopment delay at the age of 2 months.MethodsWe recruited 33 preterm neonates who required TPN during their NICU admission. Blood samples were collected for metal analysis at two different time points (admission and before discharge). Metals in the daily TPN received by preterm neonates were analyzed. Neurodevelopment was assessed using the Ages and Stages Questionnaire Edition 3 (ASQ-3).ResultsAll samples of TPN had metal contamination: 96% exceeded the critical arsenic limit (0.3 μg/kg body weight/day); daily manganese intake from TPN for preterm neonates exceeded the recommended dose (1 µg/kg body weight) as it was added intentionally to TPN solutions, raising potential safety concerns. All samples of RBC transfusions exceeded the estimated intravenous reference dose for lead (0.19 µg/kg body weight). Levels of mercury, lead and manganese in preterm neonates at discharge decreased 0.867 µg/L (95% CI, 0.76, 0.988), 0.831 (95%CI, 0.779, 0.886) and 0.847 µg/L (95% CI, 0.775, 0.926), respectively. A decrease in ASQ-3-problem solving scores was associated with higher levels of blood lead in preterm neonates taken at admission (ß = −0.405, 95%CI = −0.655, −0.014), and with plasma manganese (ß = −0.562, 95%CI = −0.995, −0.172). We also observed an association between decreased personal social domain scores with higher blood lead levels of preterm neonates before discharge (ß = −0.537, 95%CI = −0.905, −0.045).ConclusionOur findings provide evidence to suggest negative impacts on the neurodevelopment at 2 months of preterm infants exposed to certain metals, possibly related to TPN intake and/or blood transfusions received during their NICU stay. Preterm neonates may be exposed to levels of metals in utero.  相似文献   
7.
The aerial parts of Daphne sericea yielded two new flavonoids, luteolin 7-methyl ether 5-β-d-glucoside and luteolin 7,3′-dimethyl ether 5-β-d-glucoside, as well as luteolin 7-methyl ether, isovitexin, apigenin and its 7-β-d-glucoside.  相似文献   
8.
Flavonoid patterns of several provenances ofVeronica triloba, V. sublobata, andV. hederifolia s. str. have been investigated. 7-0-glucuronides of apigenin and luteolin as well as of 6-substituted (6-hydroxyluteolin and hispidulin) and 3′-methylated (chrysoeriol) derivatives represent characteristic accumulation tendencies in theV. hederifolia group. The three species show slightly different flavonoid profiles.V. hederifolia exhibits a cumulative pattern of all compounds occurring either inV. triloba orV. sublobata, thus supporting the hypothesis of an allopolyploid origin ofV. hederifolia.  相似文献   
9.
Anthocyanins, variously identified in inflorescence, fruit, leaf or petiole of 59 representative species of the Araccae, are of a simple type. The most common pigment is cyanidin 3-rutinoside, while pelargonidin 3-rutinoside and cyanidin 3-glucoside are regularly present. Two rare pigments are: cyanidin 3-gentiobioside in Anchomanes and Rhektophyllum, both in the subfamily Lasioideae; and delphinidin 3-rutinoside in Schismatoglottis concinna. In a leaf survey of 144 species from 58 genera, flavone C-glycosides (in 82%) and proanthocyanidins (in 35–45%) were found as the major flavonoids. In the subfamily Calloideae, subtribe Symplocarpeae, flavonols replace glycoflavones as the major leaf components but otherwise flavonols are uncommon in the family (in 27% of the sample) and more usually co-occur with flavone C-glycosides. Two new flavonol glycosides were characterized from Lysichiton camtschatcense: kaempferol 3-(6-arabinosylgalactoside)and kaempferol 3-xylosylgalactoside. Simple flavones, luteolin and chrysoeriol (in 6%) were found only in the subtribes Arinae and Cryptocoryninae, subfamily Aroideae. Flavonoid sulphates were identified in only four taxa: glycoflavone sulphates in two Culcasia species and Philodendron ornatum and a mixture of flavone and flavonol sulphates in Scindapsus pictus. Caffeic ester sulphates were more common and their presence in Anthurium hookeri was confirmed. These results show that the Araceae are unusual amongst the monocots in their simple and relatively uniform flavonoid profile; no one subfamily is clearly distinguished, although at tribal level some significant taxonomic patterns are observed. The best defined groups are the subfamilies Lasioideae and Monsteroideae, and the tribes Symplocarpeae and Arophyteae, and the subtribe Arinae. The greatest chemical diversity occurs in Anthurium and Philodendron, but this may only reflect the fact that these are the two largest genera in the family. The origin and relationship of the Araccae to other monocot groups are discussed in the light of the flavonoid evidence.  相似文献   
10.
Leaves of 97 taxa representing all the genera at present recognized in the family Oleaceae were surveyed for flavonoids. Four flavonol glycosides were found to be common, the 3-glucmides and 3-rutinosides of quercetin and kaempferol, as were four flavone glycosides, namely the 7-glurosides arid 7-rutinosides of luteolin and apigenin. Among rarer constituents detected were luteolin 4'-glucoside, eriodictyol 7-glucoside, chrysoeriol 7-glucoside, an apigenin-di-C-glycoside and several higher glycosides of quercetin. The species and genera surveyed fell into two groups: those with flavonol glycosides alone; and those with both flavonol and flavone glycosides. The most striking correlation was with chromosome number (and subfamily division) since almost all taxa with a basic number of 11, 13 and 14 had only flavonol glycosides, whereas most taxa with x = 23 had both types of flavonoid. Evolutionary advancement in the family appears to involve the gradual replacement of flavonol by flavone glycosides. Indeed, a few tam, notably Nestegis apelala, Picconia excelsa and Tesserandra fluminense , lacked flavonol glycosides in the leaves completely. At the lower levels of classification, the distribution of flavonoids is of less interest. However, the patterns in Linociera and Chionanthus , two taxa recently made congeneric, are sufficiently different to suggest that this decision might have to be reconsidered when more is known of their chemistry. Otherwise leaf patterns generally fit in with the existing generic classification in the family.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号