首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137437篇
  免费   5256篇
  国内免费   15695篇
  2022年   1136篇
  2021年   1643篇
  2020年   1934篇
  2019年   3761篇
  2018年   2985篇
  2017年   2137篇
  2016年   2585篇
  2015年   3863篇
  2014年   5320篇
  2013年   7662篇
  2012年   5025篇
  2011年   5856篇
  2010年   4325篇
  2009年   4921篇
  2008年   5373篇
  2007年   6231篇
  2006年   6108篇
  2005年   5726篇
  2004年   5377篇
  2003年   4793篇
  2002年   4483篇
  2001年   3802篇
  2000年   3041篇
  1999年   3261篇
  1998年   2884篇
  1997年   2315篇
  1996年   2176篇
  1995年   2457篇
  1994年   2491篇
  1993年   2251篇
  1992年   2115篇
  1991年   1939篇
  1990年   1687篇
  1989年   1474篇
  1988年   1505篇
  1987年   1253篇
  1986年   964篇
  1985年   2781篇
  1984年   4088篇
  1983年   2791篇
  1982年   3514篇
  1981年   2822篇
  1980年   2694篇
  1979年   2471篇
  1978年   1994篇
  1977年   1764篇
  1976年   1594篇
  1975年   1304篇
  1974年   1266篇
  1973年   1244篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
Inflammation is a key instigator of the immune responses that drive atherosclerosis and allograft rejection. IL-1α, a powerful cytokine that activates both innate and adaptive immunity, induces vessel inflammation after release from necrotic vascular smooth muscle cells (VSMCs). Similarly, IL-1α released from endothelial cells (ECs) damaged during transplant drives allograft rejection. However, IL-1α requires cleavage for full cytokine activity, and what controls cleavage in necrotic ECs is currently unknown. We find that ECs have very low levels of IL-1α activity upon necrosis. However, TNFα or IL-1 induces significant levels of active IL-1α in EC necrotic lysates without alteration in protein levels. Increased activity requires cleavage of IL-1α by calpain to the more active mature form. Immunofluorescence and proximity ligation assays show that IL-1α associates with interleukin-1 receptor-2, and this association is decreased by TNFα or IL-1 and requires caspase activity. Thus, TNFα or IL-1 treatment of ECs leads to caspase proteolytic activity that cleaves interleukin-1 receptor-2, allowing IL-1α dissociation and subsequent processing by calpain. Importantly, ECs could be primed by IL-1α from adjacent damaged VSMCs, and necrotic ECs could activate neighboring normal ECs and VSMCs, causing them to release inflammatory cytokines and up-regulate adhesion molecules, thus amplifying inflammation. These data unravel the molecular mechanisms and interplay between damaged ECs and VSMCs that lead to activation of IL-1α and, thus, initiation of adaptive responses that cause graft rejection.  相似文献   
5.
Signaling at nerve cell synapses is a key determinant of proper brain function, and synaptic defects—or synaptopathies—are at the basis of many neurological and psychiatric disorders. In key areas of the mammalian brain, such as the hippocampus or the basolateral amygdala, the clustering of the scaffolding protein Gephyrin and of γ-aminobutyric acid type A receptors at inhibitory neuronal synapses is critically dependent upon the brain-specific guanine nucleotide exchange factor Collybistin (Cb). Accordingly, it was discovered recently that an R290H missense mutation in the diffuse B-cell lymphoma homology domain of Cb, which carries the guanine nucleotide exchange factor activity, leads to epilepsy and intellectual disability in human patients. In the present study, we determined the mechanism by which the CbR290H mutation perturbs inhibitory synapse formation and causes brain dysfunction. Based on a combination of biochemical, cell biological, and molecular dynamics simulation approaches, we demonstrate that the R290H mutation alters the strength of intramolecular interactions between the diffuse B-cell lymphoma homology domain and the pleckstrin homology domain of Cb. This defect reduces the phosphatidylinositol 3-phosphate binding affinity of Cb, which limits its normal synaptogenic activity. Our data indicate that impairment of the membrane lipid binding activity of Cb and a consequent defect in inhibitory synapse maturation represent a likely molecular pathomechanism of epilepsy and mental retardation in humans.  相似文献   
6.
Toxocariasis is a soil-transmitted helminthozoonosis due to infection of humans by larvae of Toxocara canis. The disease could produce cognitive and behavioral disturbances especially in children. Meanwhile, in our modern era, the incidence of immunosuppression has been progressively increasing due to increased incidence of malignancy as well as increased use of immunosuppressive agents. The present study aimed at comparing some of the pathological and immunological alterations in the brain of normal and immunosuppressed mice experimentally infected with T. canis. Therefore, 180 Swiss albino mice were divided into 4 groups including normal (control) group, immunocompetent T. canis-infected group, immunosuppressed group (control), and immunosuppressed infected group. Infected mice were subjected to larval counts in the brain, and the brains from all mice were assessed for histopathological changes, astrogliosis, and IL-5 mRNA expression levels in brain tissues. The results showed that under immunosuppression, there were significant increase in brain larval counts, significant enhancement of reactive gliosis, and significant reduction in IL-5 mRNA expression. All these changes were maximal in the chronic stage of infection. In conclusion, the immunopathological alterations in the brains of infected animals were progressive over time, and were exaggerated under the effect of immunosuppression as did the intensity of cerebral infection.  相似文献   
7.
8.
The drug–serum albumin interaction plays a dominant role in drug efficacy and disposition. The glycation of serum albumin that occurs during diabetes may affect its drug‐binding properties in vivo. In order to evaluate the interactivity characteristics of cyanidin‐3‐O‐glucoside (C3G) with human serum albumin (HSA) and glycated human serum albumin (gHSA), this study was undertaken using multiple spectroscopic techniques and molecular modeling analysis. Time‐resolved fluorescence and the thermodynamic parameters indicated that the quenching mechanism was static quenching, and hydrogen bonding and Van der Waals force were the main forces. The protein fluorescence could be quenched by C3G, whereas the polarity of the fluorophore was not obviously changed. C3G significantly altered the secondary structure of the proteins. Furthermore, the interaction force that existed in the HSA–C3G system was greater than that in the gHSA–C3G system. Fluorescence excitation emission matrix spectra, red edge excitation shift, Fourier transform infrared spectroscopy and circular dichroism spectra provided further evidence that glycation could inhibit the binding between C3G and proteins. In addition, molecular modeling analysis supported the experimental results. The results provided more details for the application of C3G in the treatment of diabetes.  相似文献   
9.
1. Trichome‐producing (hairy) and trichomeless (glabrous) plants of Arabidopsis halleri subsp. gemmifera were investigated to test whether plant resistance to herbivory depends on the plants' phenotypes and/or the phenotypes of neighbouring plants (associational effects). 2. A common garden experiment was conducted in which the relative frequency of hairy and glabrous plants was manipulated. Two species of leaf‐chewing insects (larvae of a white butterfly and a cabbage sawfly) were found less often on hairy plants than on glabrous plants. By contrast, the numbers of aphids and flea beetles did not differ significantly between hairy and glabrous plants. For none of these insects did abundance depend on the frequency of the two plant morphs. 3. A field survey was conducted in two natural populations of A. halleri. In the first population, a species of white butterfly was the dominant herbivore, and hairy plants incurred less leaf damage than glabrous plants across 2 years. By contrast, in the other population, where flea beetles were dominant, there were no consistent differences in leaf damage between the two types of plants. In neither of the two populations was any evidence found of associational effects. 4. This study did not provide any conclusive evidence of associational effects of anti‐herbivore resistance, but it was discovered that trichomes can confer resistance to certain herbivores. Given the results of previous work by the authors on associational effects against a flightless leaf beetle, such associational effects of the trichome dimorphism of A. halleri were herbivore‐specific.  相似文献   
10.
Aminoacyl-tRNA synthetases catalyze ATP-dependent covalent coupling of cognate amino acids and tRNAs for ribosomal protein synthesis. Escherichia coli isoleucyl-tRNA synthetase (IleRS) exploits both the tRNA-dependent pre- and post-transfer editing pathways to minimize errors in translation. However, the molecular mechanisms by which tRNAIle organizes the synthetic site to enhance pre-transfer editing, an idiosyncratic feature of IleRS, remains elusive. Here we show that tRNAIle affects both the synthetic and editing reactions localized within the IleRS synthetic site. In a complex with cognate tRNA, IleRS exhibits a 10-fold faster aminoacyl-AMP hydrolysis and a 10-fold drop in amino acid affinity relative to the free enzyme. Remarkably, the specificity against non-cognate valine was not improved by the presence of tRNA in either of these processes. Instead, amino acid specificity is determined by the protein component per se, whereas the tRNA promotes catalytic performance of the synthetic site, bringing about less error-prone and kinetically optimized isoleucyl-tRNAIle synthesis under cellular conditions. Finally, the extent to which tRNAIle modulates activation and pre-transfer editing is independent of the intactness of its 3′-end. This finding decouples aminoacylation and pre-transfer editing within the IleRS synthetic site and further demonstrates that the A76 hydroxyl groups participate in post-transfer editing only. The data are consistent with a model whereby the 3′-end of the tRNA remains free to sample different positions within the IleRS·tRNA complex, whereas the fine-tuning of the synthetic site is attained via conformational rearrangement of the enzyme through the interactions with the remaining parts of the tRNA body.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号