首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   2篇
  国内免费   2篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   14篇
  2013年   5篇
  2012年   6篇
  2011年   8篇
  2010年   6篇
  2009年   4篇
  2008年   6篇
  2007年   4篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   5篇
  2000年   1篇
  1999年   3篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1989年   1篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有113条查询结果,搜索用时 45 毫秒
1.
The role of brown adipose tissue in the regulation of energy balance and maintenance of body weight is well known in rodents. Recently, interest in this tissue has re-emerged due to the realization of active brown-like adipose tissue in adult humans and inducible brown-like adipocytes in white adipose tissue depots in response to appropriate stimuli (“browning process”). Brown-like adipocytes that appear in white fat depots have been called “brite” (from brown-in-white) or “beige” adipocytes and have characteristics similar to brown adipocytes, in particular the capacity for uncoupled respiration. There is controversy as to the origin of these brite/beige adipocytes, but regardless of this, induction of the browning of white fat represents an attractive potential strategy for the management and treatment of obesity and related complications. Here, the different physiological, pharmacological and dietary determinants that have been linked to white-to-brown fat remodeling and the molecular mechanisms involved are reviewed in detail. In the light of available data, interesting therapeutic perspectives can be expected from the use of specific drugs or food compounds able to induce a program of brown fat differentiation including uncoupling protein 1 expression and enhancing oxidative metabolism in white adipose cells. However, additional research is needed, mainly focused on the physiological relevance of browning and its dietary control, where the use of ferrets and other non-rodent animal models with a more similar adipose tissue organization and metabolism to humans could be of much help. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.  相似文献   
2.
Obesity has become a global problem affecting adults and children alike. Lifestyle choices both personal and industry driven can be blamed for the rise in obesity. One must distinguish between the possibly reversible overweight condition and the almost intractable actual morbid obesity where predisposing genetic factors may come into play. Both however exhibit consequences to health with a severity that cannot be underestimated. Deleterious changes to metabolism can lead to type II diabetes and atherosclerosis and other organ dysfunctions. It has long been recognized that there are two main types of fatty tissue in the body, white adipose tissue (WAT) serving a storage function and brown adipose tissue (BAT) serving a thermogenic function. The new discovery has been that WAT cells can be induced to undergo conversion (browning) to BAT to yield what is called beige adipose tissue, acquiring the thermogenic function. The clinical dream is to be able to promote browning and to induce, what may be called, burning off the fat. In this B&B article I entice the reader with a recent study that shows how two key hormones insulin and leptin operate cooperatively in the brain to monitor and regulate energy balance and the downstream effect of browning. I present other studies to add additional perspectives to the understanding of the mechanisms in peripheral tissues and other hormones that play additional key roles. Whether obesity can be conquered therapeutically by manipulating the regulatory systems is still an open question.  相似文献   
3.
李兴升  王德华  杨明 《动物学报》2004,50(3):334-340
为研究低温胁迫条件下长爪沙鼠的适应对策及瘦素对体重和能量平衡的调节作用 ,我们将 7只成年雌性长爪沙鼠在 5℃条件下驯化 2 1d ,另选 7只作为对照 ,对体重、血清瘦素含量、体脂含量、摄入能、基础代谢率、非颤抖性产热等进行了测定。结果发现 :1 ) 5℃条件下长爪沙鼠的体重没有明显变化 ;2 ) 5℃条件下长爪沙鼠的血清瘦素浓度和体脂含量均明显低于对照组 ,且瘦素浓度与体脂含量呈显著正相关 ;3) 5℃条件下长爪沙鼠的摄入能、基础代谢率和非颤抖性产热等显著高于对照。这些结果表明 :长爪沙鼠在低温条件下产热能力和自身维持能量消耗都增加 ,能量摄入因此而增加 ;瘦素参与了能量平衡和体重的调节 ,但没有直接参与产热调节  相似文献   
4.
Adipose tissue is a major metabolic organ, and it has been traditionally classified as either white adipose tissue(WAT) or brown adipose tissue(BAT). WAT and BAT are characterized by different anatomical locations, morphological structures, functions, and regulations. WAT and BAT are both involved in energy balance. WAT is mainly involved in the storage and mobilization of energy in the form of triglycerides, whereas BAT specializes in dissipating energy as heat during cold- or diet-induced thermogenesis. Recently, brownlike adipocytes were discovered in WAT. These brownlike adipocytes that appear in WAT are called beige or brite adipocytes. Interestingly, these beige/brite cells resemble white fat cells in the basal state, but they respond to thermogenic stimuli with increased levels of thermogenic genes and increased respiration rates. In addition, beige/brite cells have a gene expressionpattern distinct from that of either white or brown fat cells. The current epidemic of obesity has increased the interest in studying adipocyte formation(adipogenesis), especially in beige/brite cells. This review summarizes the developmental process of adipose tissues that originate from the mesenchymal stem cells and the features of these three different types of adipocytes.  相似文献   
5.
The presence of two distinct types of adipose tissue, which have opposing functions, has been known for decades. White adipose tissue (WAT) is the main tissue of energy storage, while brown adipose tissue (BAT) dissipates energy as heat and is required for non-shivering thermoregulation. In the last few years, a third type of adipocyte was identified, termed the brite (“brown and white”) or beige adipocyte. Their physiological control and role, however, are not fully clarified. Brite/beige adipocytes have a positive impact on systemic metabolism that is generally explained by the thermogenesis of brite/beige adipocytes; although thermogenesis has not been directly measured but is mostly inferred by gene expression data of typical thermogenic genes such as uncoupling protein 1 (UCP1). Here we critically review functional evidence for the thermogenic potential of brite/beige adipocytes, leading to the conclusion that direct measurements of brite/beige adipocyte bioenergetics, beyond gene regulation, are pivotal to quantify their thermogenic potential. In particular, we exemplified that the massive induction of UCP1 mRNA during the browning of isolated subcutaneous adipocytes in vitro is not reflected in significant alterations of cellular bioenergetics. Herein, we demonstrate that increases in mitochondrial respiration in response to beta-adrenergic stimulus can be independent of UCP1. Using HEK293 cells expressing UCP1, we show how to directly assess UCP1 function by adequate activation in intact cells. Finally, we provide a guide on the interpretation of UCP1 activity and the pitfalls by solely using respiration measurements. The functional analysis of beige adipocyte bioenergetics will assist to delineate the impact of browning on thermogenesis, possibly elucidating additional physiological roles and its contribution to systemic metabolism, highlighting possible avenues for future research. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   
6.

Aims

Previous epidemiological studies have suggested that ingestion of chocolate reduces the risk of cardiovascular disease. In the present study, we examined the effects of flavan-3-ols derived from cocoa on blood pressure, lipolysis, and thermogenesis in rats fed a high-fat diet and that showed early signs of metabolic syndrome.

Main methods

The rats were divided into three groups, and fed either normal diet (normal), 60% fat high-fat diet (HFD), or HFD containing 0.2% flavan-3-ols (HFD-flavan) for 4 weeks. At the end of the feeding period, blood pressure was measured and animals were sacrificed under anesthesia. Lipolysis and thermogenesis-related protein levels were measured in several tissues by Western blotting, and mitochondrial DNA copy number was measured by RT-PCR.

Key findings

Mean blood pressure and epididymal adipose tissue weight of HFD-flavan were significantly lower compared with those of HFD. Uncoupling protein (UCP)1 in brown adipose tissue and UCP3 in gastrocnemius of HFD-flavan were significantly increased compared with those of HFD group. Carnitine palmitoyltransferase (CPT) 2 levels in liver and medium-chain acyl-CoA dehydrogenase (MCAD) levels in gastrocnemius and liver were significantly increased by the supplementation of flavan-3-ols.

Significance

In addition to having hypotensive effects, flavan-3-ols enhance thermogenesis and lipolysis and consequently reduce white adipose tissue weight gain in response to high-fat diet feeding.  相似文献   
7.
Mammalian hibernation is characterized by prolonged torpor bouts interspersed by brief arousal periods. Adequate antioxidant defenses are needed both to sustain cell viability over weeks of deep torpor and to defend against high rates of oxyradical formation associated with massive oxygen-based thermogenesis during arousal. The present study shows that up-regulation of peroxiredoxins contributes to antioxidant defense during torpor in thirteen-lined ground squirrels, Spermophilus tridecemlineatus. Expression levels of three isozymes of the 2-Cys peroxiredoxin (Prdx) family were quantified by Western blotting, the results showing 4.0- and 12.9-fold increases in Prdx1 protein in brown adipose tissue (BAT) and heart, respectively, during hibernation compared with euthermia. Comparable increases in Prdx2 were 2.4- and 3.7-fold whereas Prdx3 rose by 3.1-fold in heart of torpid animals. Total 2-Cys peroxiredoxin enzymatic activity also rose during hibernation by 1.5-fold in heart and 3.5-fold in BAT. Furthermore, RT-PCR showed that prdx2 mRNA levels increased by 1.7- and 3.7-fold in BAT and heart, respectively, during hibernation. A partial nucleotide sequence of prdx2 from ground squirrels was obtained by PCR amplification, the deduced amino acid sequence showing 96-97% identity with Prdx2 from other mammals. Some unique amino acid substitutions were identified that might contribute to stabilizing Prdx2 conformation at the near 0 degrees C body temperatures during torpor.  相似文献   
8.
FXR-deficiency confers increased susceptibility to torpor   总被引:1,自引:0,他引:1  
The role of the nuclear receptor FXR in adaptive thermogenesis was investigated using FXR-deficient mice. Despite elevated serum bile acid concentrations and increased mRNA expression profiles of thermogenic genes in brown adipose tissue, FXR-deficiency did not alter energy expenditure under basal conditions. However, FXR-deficiency accelerated the fasting-induced entry into torpor in a leptin-dependent manner. FXR-deficient mice were also extremely cold-intolerant. These altered responses may be linked to a more rapid decrease in plasma concentrations of metabolic fuels (glucose, triglycerides) thus impairing uncoupling protein 1-driven thermogenesis. These results identify FXR as a modulator of energy homeostasis.  相似文献   
9.
Catecholamines are viewed as major stimulants of diet- and cold-induced thermogenesis and of fasting-induced lipolysis, through the β-adrenoceptors (β123). To test this hypothesis, we generated β123-adrenoceptor triple knockout (TKO) mice and compared them to wild type animals. TKO mice exhibited normophagic obesity and cold-intolerance. Their brown fat had impaired morphology and lacked responses to cold of uncoupling protein-1 expression. In contrast, TKO mice had higher circulating levels of free fatty acids and glycerol at basal and fasted states, suggesting enhanced lipolysis. Hence, β-adrenergic signalling is essential for the resistance to obesity and cold, but not for the lipolytic response to fasting.  相似文献   
10.
高原鼠兔冷驯化和脱冷驯化中的产热变化   总被引:16,自引:2,他引:16  
柳劲松  李庆芬 《动物学报》1996,42(4):377-385
本文探讨了冷驯化和脱冷驯化对高原鼠兔代谢产热的影响。在冷驯化中,鼠兔的静止代谢率逐渐增加,血清T3‘/T4比率上升,肝线粒体状态3呼吸明显增加,线粒体细胞色素C氧化酶激活,而肝脏线粒体蛋白含量没有明显变化。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号