首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   600篇
  免费   55篇
  国内免费   5篇
  2023年   7篇
  2022年   7篇
  2021年   7篇
  2020年   17篇
  2019年   18篇
  2018年   16篇
  2017年   22篇
  2016年   21篇
  2015年   20篇
  2014年   20篇
  2013年   41篇
  2012年   11篇
  2011年   27篇
  2010年   10篇
  2009年   35篇
  2008年   28篇
  2007年   44篇
  2006年   28篇
  2005年   33篇
  2004年   34篇
  2003年   26篇
  2002年   19篇
  2001年   17篇
  2000年   18篇
  1999年   22篇
  1998年   5篇
  1997年   7篇
  1996年   11篇
  1995年   8篇
  1994年   10篇
  1993年   5篇
  1992年   12篇
  1991年   9篇
  1990年   16篇
  1989年   6篇
  1988年   5篇
  1987年   2篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1982年   2篇
  1980年   1篇
  1978年   2篇
  1977年   2篇
排序方式: 共有660条查询结果,搜索用时 15 毫秒
1.
1. Feeding behaviour of generalist and specialist predators is determined by a variety of trophic adaptations. Specialised prey‐capture adaptations allow specialists to catch relatively large prey on a regular basis. As a result, specialists might be adapted to exploit each item of prey more thoroughly than do generalists. 2. It was expected that obligatory specialist cursorial spiders would feed less frequently than generalists but for a longer time and, thus, that their foraging pause would be longer. First, the feeding frequencies of three generalist spider species (Cybaeodamus taim, Harpactea hombergi, Hersiliola sternbergsi) were compared with those three phylogenetically related specialist species: myrmecophagous Zodarion rubidum, and araneophagous Nops aff. variabilis and Palpimanus orientalis. 3. Generalists captured more prey, exploited each item of prey for a significantly shorter time, and had a shorter foraging pause than was the case for specialists. Generalists also gained significantly less relative amount of prey mass than did specialists. 4. Second, the study compared the prey DNA degradation rate in the gut of generalists and specialists by means of PCR. The degradation rate was not significantly different between specialists and generalists: the detectability half‐life was estimated to exist for 14.3 days after feeding. 5. This study shows that the feeding strategies of cursorial generalist and obligatory specialist spiders are different. Obligatory specialists have evolved a feeding strategy that is based on thorough exploitation of a few large prey, whereas generalists have evolved a strategy that is based on short exploitation of multiple small items of prey.  相似文献   
2.
The efficiency of barrier-connected pitfall trapping was compared to conventional single traps or arrays. For ground-active beetles, the use of a pitfall system incorporating a wetting agent with five traps arranged in a cross formation connected by plastic barriers was more efficient than a single dry trap by at least an order of magnitude and at least twice as efficient as five traps without connecting barriers. It is argued that the efficiency of pitfall trapping may be improved markedly by using barrier-connected traps, particularly for some carabid and staphylinid beetles and lycosid spiders. Capture of linyphiids was not improved by the use of barriers and was dependent only on the use of wetting agent and number of traps used.  相似文献   
3.
According to current hypotheses the main types of social parasitism among ants, namely slavery, temporary parasitism, and inquilinism, arose from such features as predation on other ants, or territorial behavior, both presumed precursors of slavemaking, and polygyny, a presumed precursor of temporary parasitism and inquilinism. The latter is believed also to represent a final instar in several evolutionary pathways leading from slavery, temporary parasitism, and xenobiosis to this permanently parasitic, workerless condition. Speciation, the origin of parasitic species from their usually closely related host species, is suggested to occur due to temporary geographic isolation and subsequent transition of one of the newly formed daughter species to parasitism in the nests of the other. Evidence is presented suggesting that the main types of social parasitism originated independently of each other. 15 ant genera are parasitized exclusively by inquilines, Eve other genera exclusively by temporary parasites. Only four groups of non-parasitic ant species (Formica, Tet-ramorium, Leptothorax subgenera Leptothorax and Myrafant) have parasites of several types each. Within these roups, however, there is little evidence of evolutionary transitions from one type to another. The few exceptions, mainly workerless species of the genera Epimyrma and Chalepoxenus, represent parasites which clearly derive from slave-making congeners, but differ from ordinary inquilines in that they eliminate the host colony queens like their actively dulotic ancestors. The new hypothesis suggests that all forms of interspecific true social parasitism (excluding xenobiosis) orginated from a common “preparasitic” stage, a subpopulation of reproductives in polygynous colonies and species, with diverging sexual behavior (near-nest mating vs. swarming) and caste ratios (production of more sexuals vs. workers). Arguments for sympatric speciation are compiled. Various features of the ancestral, and then host species (colony sizes, population density and structure, transition from polygyny to monoyny, etc.), and of the “preparasite” (production of few, or no workers, etc.) may shape the developing parasite to become a slave-maker, inquiline, or temporary parasite. These features usually leave open only one, or in a few genera, several options. The different types of parasitism within one host species group thus may have developed in a radiative manner from the common, preparasitic stage, which explains that independent colony foundation is a common feature of all true social parasites among ants.  相似文献   
4.
1. Population dynamics and interactions that vary over a species' range are of particular importance in the context of latitudinal clines in biological diversity. Winter moth (Operophtera brumata) and autumnal moth (Epirrita autumnata) are two species of eruptive geometrids that vary widely in outbreak tendency over their range, which generally increases from south to north and with elevation. 2. The predation pressure on geometrid larvae and pupae over an elevational gradient was tested. The effects of background larval density and bird occupancy of monitoring nest boxes on predation rates were also tested. Predation on larvae was tested through exclusion treatments at 20 replicate stations over four elevations at one site, while pupae were set out to measure predation at two elevations at three sites. 3. Larval densities were reduced by bird predation at three lower elevations, but not at the highest elevation, and predation rates were 1.9 times higher at the lowest elevation than at the highest elevation. The rate of predation on larvae was not related to background larval density or nest box occupancy, although there were more eggs and chicks at the lowest elevation. There were no consistent differences in predation on pupae by elevation. 4. These results suggest that elevational variation in avian predation pressure on larvae may help to drive elevational differences in outbreak tendency, and that birds may play a more important role in geometrid population dynamics than the focus on invertebrate and soil predators of previous work would suggest.  相似文献   
5.
6.
1. Plant quality (bottom‐up effects) and natural enemies (top‐down effects) affect herbivore performance. Furthermore, plant quality can also influence the impact of natural enemies. 2. Lower plant quality through reduced irrigation increased the abundance of the cryptic species from the Bemisia tabaci complex [hereafter B. tabaci Middle East Asia Minor 1 (MEAM1)], but not its natural enemies on cotton. It was therefore predicted that lower plant quality would diminish the impact of natural enemies in regulating this herbivore. 3. Over three cotton seasons, plant quality was manipulated via differential irrigation and natural enemy abundance with insecticides. Life tables were used to evaluate the impact of these factors on mortality of immature B. tabaci (MEAM1) over nine generations. 4. Mortality of B. tabaci (MEAM1) was consistently affected by natural enemies but not by plant quality. This pattern was driven by high levels of sucking predation, which was the primary (key) factor associated with changes in immature mortality across all irrigation and natural enemy treatments. Dislodgement (chewing predation and weather) and parasitism contributed as key factors in some cases. Analyses also showed that elimination of sucking predation and dislodgement would have the greatest effect on overall mortality. 5. The top‐down effects of natural enemies had dominant effects on populations of B. tabaci (MEAM1) relative to the bottom‐up effects of plant quality. Effects were primarily due to native generalist arthropod predators and not more host‐specific aphelinid parasitoids. The findings of this study demonstrate the important role of arthropod predators in population suppression and validate the importance of conservation biological control in this system for effective pest control.  相似文献   
7.
Satellite telemetry data was used to predict at sea spatial usage of five top order and meso-predators; Antarctic fur seals (Arctocephalus gazella), macaroni penguins (Eudyptes chrysolophus), king penguins (Aptenodytes patagonicus), black browed albatross (Diomedea melanophrys), and light mantled albatross (Phoebetria palpebrata). All were tagged at Heard Island in the Southern Ocean over a single summer season collecting over 5000 tracking days for 178 individuals. We aimed to predict areas of likely high foraging value from tracking environmental data and also to quantify overlap in foraging range between species. Hidden Markov models were used to differentiate between bouts of Area Restricted Search (ARS) assumed to be associated with areas of higher foraging value, and transit behaviours. Oceanographic and distance metrics associated with ARS activity were then used to calculate a habitat electivity index. A combined bootstrap/Monte Carlo scheme was employed to propagate uncertainty from the Hidden Markov models into the habitat prediction scheme. Distinct differences were predicted in the spatial distribution of foraging locations in different species, reflecting different dispersive abilities and foraging strategy. The extent of usage and foraging distribution was largely contained within Australian the Economic Exclusion Zone (EEZ). In comparison, the smaller Australian Commonwealth Marine Protected Areas (MPAs) contained <20% of the predicted foraging distributions.  相似文献   
8.
Generalist predators have the capacity to restrict pest population growth, especially early in the season before densities increase. However, their polyphagous feeding habits sometimes translate into reduced pest consumption when they target alternative prey. An order-specific monoclonal antibody was developed to examine the strength of trophic connections between Diptera, a major category of non-pest prey, and linyphiid spiders in alfalfa. We report the development and characterization of a monoclonal antibody with order-level specificity to Diptera. This antibody elicited strong absorbance to 22 Diptera from 13 families, no false-positive reactivity to non-dipteran invertebrates, and antigen detection periods following prey consumption that were comparable between spiders. Over 900 field-collected females of the linyphiid spiders Erigone autumnalis and Bathyphantes pallidus were screened for Diptera antigen. Significantly more B. pallidus screened positive for Diptera (40%) compared to E. autumnalis (16%), indicating differential reliance on these prey. In parallel with the collection of spiders for gut-content analysis, prey availability was estimated at web sites. The two spiders exhibited different feeding responses to prey availability. Consumption of Diptera by B. pallidus was strongly correlated with Diptera abundance whilst the availability of other potential prey did not influence predation rates. Conversely, E. autumnalis did not prey upon Diptera in proportion to availability, but increased Collembola activity-density reduced dipteran consumption. Integration of molecular gut-content analysis with precise sampling of prey demonstrated how two closely related linyphiid spiders exhibit different feeding responses to the availability of prey under natural field conditions. Elucidating the feeding preferences of natural enemies is critical to effective incorporation of biological control by generalist predators in the management of agricultural pests.  相似文献   
9.
1. The characterisation of energy flow through communities is a primary goal of ecology. Furthermore, predator–prey interactions can influence both species abundance and community composition. The ant subfamily Ponerinae includes many predatory species that range from generalist insectivores to highly specialised hunters that target a single prey type. Given their high diversity and ubiquity in tropical ecosystems, measuring intra- and interspecific variation in their trophic ecology is essential for understanding the role of ants as predators of insect communities. 2. The stable isotopic composition of nitrogen of 22 species from the ant subfamily Ponerinae was measured, relative to plants and other predatory and herbivorous insects at two Atlantic Forest sites in Argentina. The study tested the general assumption that ponerine ants are all predatory, and examined intra- and interspecific variation in trophic ecology relative to habitat, body size and cytochrome c oxidase subunit 1 sequences (DNA barcoding). 3. Stable isotope analysis revealed that most ponerines occupy high trophic levels (primary and secondary predators), but some species overlapped with known insect herbivores. Species residing at low trophic levels were primarily arboreal and may rely heavily on nectar or other plant-based resources in their diet. In addition, larger species tend to occupy lower trophic positions than smaller species. 4. Although some of the species were divided into two or more genetic clusters by DNA barcoding analysis, these clusters did not correspond to intraspecific variation in trophic position; therefore, colony dietary flexibility most probably explains species that inhabit more than one trophic level.  相似文献   
10.
The relationship between where a female chooses to oviposit and her larvae’s performance at those sites is critical to both the ecology and evolution of plant-insect interactions. For predispersal seed predators that do not themselves pollinate their host and whose larvae are sessile, females must be able to predict which flowers will ultimately be pollinated and set fruit, or be able to manipulate flowers in some way to ensure they set fruit. Otherwise, their offspring will perish. Here we describe the results of an experiment in which we tested if female Hylemya (Diptera: Anthomyiidae) are choosing oviposition sites wisely, or if they are manipulating flowers of their host, Ipomopsis aggregata (Polemoniaceae), in some way to ensure fruit set. Previous work in this system established a positive correlation between oviposition and fruit set. By bagging females on flowers, we removed their ability to choose flowers on which to oviposit. We found that flowers females oviposited on, whether bagged (”no choice”) or unbagged (”female choice”), had a significantly higher probability of setting fruit than ”control” flowers that we bagged but did not cage females on. In addition, we tested if Hylemya prefer particular architectural locations of flowers and if those locations correspond with higher than average fruit set. Although flowers at the distal end of the plant, and those most proximal to the main stem, were more likely to set fruit overall, Hylemya was no more likely to oviposit on those flowers than others on the plant. Taken together, our results suggest that Hylemya is somehow able to manipulate its host to ensure fruit set and thus the provisioning of their larvae. Received: 3 December 1999 / Accepted: 23 March 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号