首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
  国内免费   1篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2014年   3篇
  2008年   2篇
  2007年   3篇
  2004年   6篇
  2003年   2篇
  2002年   1篇
  1989年   1篇
排序方式: 共有21条查询结果,搜索用时 188 毫秒
1.

Objective

To investigate and compare the effects of two common dietary phytosterols, stigmasterol and β-sitosterol, in altering lipid metabolism and attenuating nonalcoholic fatty liver disease (NAFLD).

Methods

Stigmasterol and β-sitosterol were administered to mice at 0.4% in a high-fat western-style diet (HFWD) for 17?weeks.

Results

Stigmasterol and β-sitosterol significantly ameliorated HFWD-induced fatty liver and metabolic abnormalities, including elevated levels of hepatic total lipids, triacylglycerols, cholesterol and liver histopathology. Both phytosterols decreased the levels of intestinal bile acids, accompanied by markedly increased fecal lipid levels. In addition, they altered the expression of genes involved in lipid metabolism. β-Sitosterol was less effective in affecting most of these parameters. Lipidomic analysis of liver and serum samples showed that stigmasterol prevented the HFWD-induced elevation of some di- and triacylglycerol species and lowering of some phospholipid species. Stigmasterol also decreased serum levels of ceramides.

Conclusion

Stigmasterol and β-sitosterol, at a dose corresponding to that suggested for humans by the FDA for lowering cholesterol levels, are shown to alleviate HFWD-induced NAFLD. Stigmasterol was more effective than β-sitosterol, possibly because of its suppression of hepatic lipogenic gene expression and modulation of circulating ceramide levels.  相似文献   
2.
To lower cholesterol, phytosterols are currently introduced as food additives, where they may become oxidized. In addition, specific biological effects of oxyphytosterols are suggested by the recent molecular clarification of the phytosterol storage disease as a dysfunctional mutation of an active sterol reexporter potentially regulated by oxidized phytosterols. We therefore studied the hydroxybenzotriazole-mediated PbO(2)-driven oxidation of phytosterols and compared it to the oxidation of cholesterol. We prepared, identified, and purified standards of 14 oxidation products of two major phytosterols. The gas chromatographic mass spectrometric characteristics of the 7alpha- and 7beta-hydroxy-, 5alpha,6alpha-epoxy, 5beta,6beta-epoxy, 7keto-, 3beta,5alpha,6beta-trihydroxy-, 3keto-, and 7-dehydro-derivatives of beta-sitosterol and stigmasterol are presented. The method also provided a convenient access to prepare 18O-labeled oxyphytosterols of high chemical and isotopic purity and can easily be extended to further phytosterols and -stanols. This enables the gas chromatography-mass spectrometry analysis of oxyphytosterols and the study of their biological effects.  相似文献   
3.
Forgo P  Kövér KE 《Steroids》2004,69(1):43-50
The applicability of homonuclear gradient enhanced NMR experiments is demonstrated in the structure determination of steroid derivatives using stigmasterol as a model compound. High resolution 1H NMR spectra of steroids very often display well resolved multiplets usually in the low-field region, and these signals can be used as starting points in several selective NMR experiments to study scalar (J coupling), and dipolar (NOE) interactions. Selective excitation was carried out using a double pulsed-field gradient spin-echo sequence (DPFGSE) in which 180 degrees Gaussian pulses are sandwiched between sine shaped z-gradients. Scalar interactions were studied by homonuclear DPFGSE-COSY, DPFGSE-relay-COSY and DPFGSE-TOCSY experiments, while DPFGSE-NOESY was used to monitor spatial environment of the selectively excited proton. These methods provided unambiguous assignments for signals of the main skeleton and the side-chain of the steroid molecule. In addition, they allowed determination of the conformationally important homonuclear proton-proton coupling constants (J).  相似文献   
4.
Plant sterols have shown potent anti-proliferative effects and apoptosis induction against breast and prostate cancers. However, the effect of sterols against hepatic cancer has not been investigated. In the present study, we assessed whether the stigmasterol isolated from Navicula incerta possesses apoptosis inductive effect in hepatocarcimona (HepG2) cells. According to the results, Stigmasterol has up-regulated the expression of pro-apoptotic gene expressions (Bax, p53) while down-regulating the anti-apoptotic genes (Bcl-2). Probably via mitochondrial apoptosis signaling pathway. With the induction of apoptosis caspase-8, 9 were activated. The DNA damage and increase in apoptotic cell numbers were observed through Hoechst staining, annexin V staining and cell cycle analysis. According to these results, we can suggest that the stigmasterol shows potent apoptosis inductive effects and has the potential to be tested as an anti-cancer therapeutic against liver cancer. [BMB Reports 2014; 47(8): 433-438]  相似文献   
5.
Arnqvist L  Persson M  Jonsson L  Dutta PC  Sitbon F 《Planta》2008,227(2):309-317
Sitosterol and stigmasterol are major sterols in vascular plants. An altered stigmasterol:sitosterol ratio has been proposed to influence the properties of cell membranes, particularly in relation to various stresses, but biosynthesis of stigmasterol is poorly understood. Recently, however, Morikawa et al. (Plant Cell 18:1008–1022, 2006) showed in Arabidopsis thaliana that synthesis of stigmasterol and brassicasterol is catalyzed by two separate sterol C-22 desaturases, encoded by the genes CYP710A1 and CYP710A2, respectively. The proteins belong to a small cytochrome P450 subfamily having four members, denoted by CYP710A1-A4, and are related to the yeast sterol C-22 desaturase Erg5p acting in ergosterol synthesis. Here, we report on our parallel investigation of the Arabidopsis CYP710A family. To elucidate the function of CYP710A proteins, transgenic Arabidopsis plants were generated overexpressing CYP710A1 and CYP710A4. Compared to wild-type plants, both types of transformant displayed a normal phenotype, but contained increased levels of free stigmasterol and a concomitant decrease in the level of free sitosterol. CYP710A1 transformants also displayed higher levels of esterified forms of stigmasterol, cholesterol, 24-methylcholesterol and isofucosterol. The results confirm the findings of Morikawa et al. (Plant Cell 18:1008–1022, 2006) regarding the function of CYP710A1 in stigmasterol synthesis, and show that CYP710A4 also has this capacity. Furthermore, our results suggest that an increased stigmasterol level alone is sufficient to stimulate esterification of other major sterols.  相似文献   
6.
A green callus culture of Croton sublyratus Kurz established from the leaf explants appeared to actively synthesize two well-known phytosterols, beta-sitosterol and stigmasterol. The phytosterol biosynthesis was highly active during the linear phase of the culture. Feeding of [1-13C]glucose into the callus culture at this growth phase showed that the label from glucose was highly incorporated into both phytosterols. Isolation of the labeled products followed by 13C NMR analysis revealed that the phytosterols had their 13C-labeling patterns consistent with the acquisition of isoprene units via both the mevalonate pathway and the deoxyxylulose pathway with relatively equal contribution. Since the biosynthesis of phytosterol has so far been reported to be mainly from the classical mevalonate pathway, this study provides a new evidence on the biosynthesis of phytosterols via the novel deoxyxylulose pathway.  相似文献   
7.
Plant sterols and their hydrogenated forms, stanols, have attracted much attention because of their benefits to human health in reducing serum and LDL cholesterol levels, with vegetable oil processing being their major source in several food products currently sold. The predominant forms of plant sterol end products are sitosterol, stigmasterol, campesterol and brassicasterol (in brassica). In this study, 3-hydroxysteroid oxidase from Streptomyces hygroscopicus was utilized to engineer oilseeds from rapeseed (Brassica napus) and soybean (Glycine max), respectively, to modify the relative amounts of specific sterols to stanols. Each of the major phytosterols had its C-5 double bond selectively reduced to the corresponding phytostanol without affecting other functionalities, such as the C-22 double bond of stigmasterol in soybean seed and of brassicasterol in rapeseed. Additionally, several novel phytostanols were obtained that are not produced by chemical hydrogenation of phytosterols normally present in plants.  相似文献   
8.
We reported previously that the methanolic root extract of the Indian medicinal plant Pluchea indica Less. (Asteraceae) could neutralize viper venom-induced action [Alam, M.I., Auddy, B., Gomes, A., 1996. Viper venom neutralization by Indian medicinal plant (Hemidesmus indicus and P. indica) root extracts. Phytother. Res. 10, 58-61]. The present study reports the neutralization of viper and cobra venom by beta-sitosterol and stigmasterol isolated from the root extract of P. indica Less. (Asteraceae). The active fraction (containing the major compound beta-sitosterol and the minor compound stigmasterol) was isolated and purified by silica gel column chromatography and the structure was determined using spectroscopic analysis (EIMS, (1)H NMR, (13)C NMR). Anti-snake venom activity was studied in experimental animals. The active fraction was found to significantly neutralize viper venom-induced lethal, hemorrhagic, defibrinogenation, edema and PLA(2) activity. Cobra venom-induced lethality, cardiotoxicity, neurotoxicity, respiratory changes and PLA(2) activity were also antagonized by the active component. It potentiated commercial snake venom antiserum action against venom-induced lethality in male albino mice. The active fraction could antagonize venom-induced changes in lipid peroxidation and superoxide dismutase activity. This study suggests that beta-sitosterol and stigmasterol may play an important role, along with antiserum, in neutralizing snake venom-induced actions.  相似文献   
9.
The increased use of plant sterols as cholesterol-lowering agents warrants further research on the possible effects of plant sterols in membranes. In this study, the effects of the incorporation of cholesterol, campesterol, β-sitosterol and stigmasterol in phospholipid bilayers were investigated by differential scanning calorimetry (DSC), resonance energy transfer (RET) between trans parinaric acid (tPA) and 2-(6-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoyl-1-hexadecanoyl-sn-glycero-3-phosphocholine (NBD-PC), and Triton X-100-induced solubilization. The phospholipids used were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), d-erythro-N-palmitoyl-sphingomyelin (PSM), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). In DSC experiments, it was demonstrated that the sterols differed in their effect on the melting temperatures of both the sterol-poor and the sterol-rich domains in DPPC and PSM bilayers. The plant sterols gave rise to lower temperatures of both transitions, when compared with cholesterol. The plant sterols also resulted in lower transition temperatures, in comparison with cholesterol, when sterol-containing DPPC and PSM bilayers were investigated by RET. In the detergent solubilization experiments, the total molar ratio between Triton X-100 and POPC at the onset of solubilization (Rt,sat) was higher for bilayers containing plant sterols, in comparison with membranes containing cholesterol. Taken together, the observations presented in this study indicate that campesterol, β-sitosterol and stigmasterol interacted less favorably than cholesterol with the phospholipids, leading to measurable differences in their domain properties.  相似文献   
10.
为了解山壳骨(Pseuderanthemum latifolium)的化学成分和生物活性,运用LC-MS联用技术分离得到羽扇豆醇(1)和豆甾醇(2)。体外活性评价结果表明,化合物1和2均具有中等的抗MRSA活性,但不具有神经保护作用。这是首次对山壳骨进行化学成分和生物活性研究,为综合开发与利用山壳骨提供科学依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号