首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   267篇
  免费   2篇
  国内免费   1篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   4篇
  2019年   1篇
  2018年   6篇
  2017年   3篇
  2016年   2篇
  2015年   6篇
  2014年   15篇
  2013年   19篇
  2012年   7篇
  2011年   18篇
  2010年   18篇
  2009年   18篇
  2008年   14篇
  2007年   19篇
  2006年   6篇
  2005年   12篇
  2004年   12篇
  2003年   13篇
  2002年   8篇
  2001年   6篇
  2000年   4篇
  1999年   7篇
  1998年   2篇
  1997年   4篇
  1996年   4篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   4篇
  1981年   6篇
  1980年   3篇
  1979年   2篇
  1977年   1篇
排序方式: 共有270条查询结果,搜索用时 343 毫秒
1.
K. Grossmann  E. W. Weiler  J. Jung 《Planta》1985,164(3):370-375
Cell division in cell suspension cultures can be completely blocked by the growth retardant tetcyclacis at a concentration of 10-4 mol l-1. In rice cells it has been demonstrated that the growth inhibition can be completely overcome by application of cholesterol independent of the duration of pretreatment with tetcyclacis. In suspension cultures of maize and soybean, too, the effect of tetcyclacis on cell division was neutralized by adding cholesterol. Other plant sterols, stigmasterol, campesterol and sitosterol were active in a decreasing order. Modifications in the cholesterol perhydro-cyclopentanophenanthrene-ring system indicate that the hydroxyl group at C-3 and the double bond between C-5 and C-6 in ring B are required for the activity. In contrast, gibberellic acid as well as ent-kaurenoic acid could not compensate retardant effects. Likewise, tetcyclasis did not change the level of gibberellins in rice cells as shown by radioimmunoassay. Thus, it is concluded that in cell suspension cultures sterols play a more important role in cell division than gibberellins.Abbreviation GAx gibberelin Ax  相似文献   
2.
Sterol 14α-demethylase (14DM, the CYP51 family of cytochrome P450) is an essential enzyme in sterol biosynthesis in eukaryotes. It serves as a major drug target for fungal diseases and can potentially become a target for treatment of human infections with protozoa. Here we present 1.9 Å resolution crystal structures of 14DM from the protozoan pathogen Trypanosoma brucei, ligand-free and complexed with a strong chemically selected inhibitor N-1-(2,4-dichlorophenyl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-phenyl-1,3,4-oxadi-azol-2-yl)benzamide that we previously found to produce potent antiparasitic effects in Trypanosomatidae. This is the first structure of a eukaryotic microsomal 14DM that acts on sterol biosynthesis, and it differs profoundly from that of the water-soluble CYP51 family member from Mycobacterium tuberculosis, both in organization of the active site cavity and in the substrate access channel location. Inhibitor binding does not cause large scale conformational rearrangements, yet induces unanticipated local alterations in the active site, including formation of a hydrogen bond network that connects, via the inhibitor amide group fragment, two remote functionally essential protein segments and alters the heme environment. The inhibitor binding mode provides a possible explanation for both its functionally irreversible effect on the enzyme activity and its selectivity toward the 14DM from human pathogens versus the human 14DM ortholog. The structures shed new light on 14DM functional conservation and open an excellent opportunity for directed design of novel antiparasitic drugs.  相似文献   
3.
The phase behavior of mixtures formed with palmitic acid (PA) and one of the following sterols (dihydrocholesterol, ergosterol, 7-dehydrocholesterol, stigmasterol and stigmastanol), in a PA/sterol molar ratio of 3/7, has been characterized by IR and 2H NMR spectroscopy at different pH. Our study shows that it is possible to form liquid-ordered (lo) lamellar phases with these binary non-phospholipid mixtures. The characterization of alkyl chain dynamics of PA in these systems revealed the large ordering effect of the sterols. It was possible to extrude these systems, using standard extrusion techniques, to form large unilamellar vesicles (LUVs), except in the case of ergosterol-containing mixture. The resulting LUVs displayed a very limited passive permeability consistent with the high sterol concentration. In addition, the stability of these PA/sterol self-assembled bilayers was also found to be pH-sensitive, therefore, potentially useful as nanovectors. By examining different sterols, we could establish some correlations between the structure of these bilayers and their permeability properties. The structure of the side chain at C17 of the sterol appears to play a prime role in the mixing properties with fatty acid.  相似文献   
4.
In this review, structures of natural products isolated from the soft corals of genus Cladiella and their biological activities are described.  相似文献   
5.
The free lipid content of extracts from the spawn of 17 molluscs were analysed by gas chromatography/mass spectrometry. These extracts encompass the encapsulated embryos and extraembryonic structures from benthic gelatinous egg masses and leathery egg capsules covering five taxonomic groups. Palmitic and stearic acids were the dominant saturated fatty acids and oleic acid was the principal unsaturated acid found in the spawn. Cholesterol was the dominant sterol and the only sterol found in the spawn from every species. Extracts from gelatinous egg masses were found to contain proportionally more fatty acids compared to leathery egg capsules. No unsaturated fatty acids were found in any of the leathery egg capsules, including five neogastropods and one littorinimorph. Unsaturated fatty acids were present in all of the gelatinous egg masses, including two other littorinimorphs. This is the first study to demonstrate that unsaturated fatty acids possess significant bacteriolytic activity against four aquatic pathogens. Encapsulated Anaspidea egg masses contain relatively high concentrations of these unsaturated fatty acids and a lipid mixture modeled on these extracts was strongly bacteriolytic at concentrations down to 0.0001 mg/ml. By comparison, lipid mixtures modeled on extracts from the spawn of four other molluscan taxa with higher proportions of saturated fatty acid and cholesterol, were only partially active against some of the bacteria at 0.1 mg/ml. Thus, unsaturated fatty acids could explain the antimicrobial activity previously reported in lipid extracts of some, but not most, molluscan spawn. MDS ordination and ANOSIM revealed significant taxonomic differences in the composition of free lipids from molluscan spawn, suggesting that lipid analyses may be useful in future systematic studies of the Mollusca.  相似文献   
6.
7.
Progesterone, the cationic amphiphile U18666A and a phospholipase inhibitor (Methyl Arachidonyl Fluoro Phosphonate, MAFP) inhibited by 70%–90% HIV production in viral reservoir cells, i.e. human THP-1 monocytes and monocyte-derived macrophages (MDM). These compounds triggered an inhibition of fluid phase endocytosis (macropinocytosis) and modified cellular lipid homeostasis since endosomes accumulated filipin-stained sterols and Bis(Monoacylglycero)Phosphate (BMP). BMP was quantified using a new cytometry procedure and was increased by 1.25 times with MAFP, 1.7 times with U18666A and 2.5 times with progesterone. MAFP but not progesterone or U18666A inhibited the hydrolysis of BMP by the Pancreatic Lipase Related Protein 2 (PLRP2) as shown by in-vitro experiments. The possible role of sterol transporters in steroid-mediated BMP increase is discussed.  相似文献   
8.
3-Hydroxy-3-methylglutaryl-CoA reductase (HMGCR) is the target of the statins, important drugs that lower blood cholesterol levels and treat cardiovascular disease. Consequently, the regulation of HMGCR has been investigated in detail. However, this enzyme acts very early in the cholesterol synthesis pathway, with ∼20 subsequent enzymes needed to produce cholesterol. How they are regulated is largely unexplored territory, but there is growing evidence that enzymes beyond HMGCR serve as flux-controlling points. Here, we introduce some of the known regulatory mechanisms affecting enzymes beyond HMGCR and highlight the need to further investigate their control.  相似文献   
9.
Sterol structure influences liquid ordered domains in membranes, and the dependence of biological functions on sterol structure can help identify processes dependent on ordered domains. In this study we compared the effect of sterol structure on ordered domain formation in symmetric vesicles composed of mixtures of sphingomyelin, 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and cholesterol, and in asymmetric vesicles in which sphingomyelin was introduced into the outer leaflet of vesicles composed of DOPC and cholesterol. In most cases, sterol behavior was similar in symmetric and asymmetric vesicles, with ordered domains most strongly stabilized by 7-dehydrocholesterol (7DHC) and cholesterol, stabilized to a moderate degree by lanosterol, epicholesterol and desmosterol, and very little if at all by 4-cholesten-3-one. However, in asymmetric vesicles desmosterol stabilized ordered domain almost as well as cholesterol, and to a much greater degree than epicholesterol, so that the ability to support ordered domains decreased in the order 7-DHC > cholesterol > desmosterol > lanosterol > epicholesterol > 4-cholesten-3-one. This contrasts with values for intermediate stabilizing sterols in symmetric vesicles in which the ranking was cholesterol > lanosterol ~ desmosterol ~ epicholesterol or prior studies in which the ranking was cholesterol ~ epicholesterol > lanosterol ~ desmosterol. The reasons for these differences are discussed. Based on these results, we re-evaluated our prior studies in cells and conclude that endocytosis levels and bacterial uptake are even more closely correlated with the ability of sterols to form ordered domains than previously thought, and do not necessarily require that a sterol have a 3β-OH group.  相似文献   
10.
Sterols play a significant role in many physiological processes affecting membrane organization, transport, permeability, and signal transduction. The development of fluorescent sterol analogs that have immediate functional relevance to the natural biomolecules is one approach to understanding the sterol-driven physiological processes. Visualizing cellular compartments with tailor-made fluorescent molecules through specific labeling methods enables organelle targeting and reveals dynamic information. In this review, we focus on the recent literature published between 2020 and 2022, with particular emphasis on extrinsic fluorophores and their investigations of sterol-driven biological processes involving sterol transport, biomolecular interactions, and biological imaging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号