首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1895篇
  免费   56篇
  国内免费   28篇
  2023年   33篇
  2022年   35篇
  2021年   65篇
  2020年   56篇
  2019年   63篇
  2018年   42篇
  2017年   28篇
  2016年   34篇
  2015年   92篇
  2014年   182篇
  2013年   169篇
  2012年   127篇
  2011年   145篇
  2010年   130篇
  2009年   104篇
  2008年   101篇
  2007年   106篇
  2006年   97篇
  2005年   66篇
  2004年   58篇
  2003年   54篇
  2002年   26篇
  2001年   8篇
  2000年   10篇
  1999年   7篇
  1998年   13篇
  1997年   11篇
  1996年   16篇
  1995年   7篇
  1994年   11篇
  1993年   7篇
  1992年   10篇
  1991年   3篇
  1990年   9篇
  1989年   7篇
  1988年   6篇
  1987年   11篇
  1985年   6篇
  1984年   1篇
  1982年   1篇
  1981年   4篇
  1980年   5篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1973年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有1979条查询结果,搜索用时 15 毫秒
1.
《Mycoscience》2014,55(4):252-259
Cytospora species are the most serious and widespread pathogens associated with canker disease on multiple plants. In this study, three species, i.e., Cytospora sophoricola, C. chrysosperma, and C. sophorae, which were isolated from Sophora in China, are described and illustrated based on their morphological characteristics and phylogenetic analyses. Cytospora sophoricola was distinguished clearly by its larger disc, multiple ostioles, cystic and multiple locules, and specific cultural characteristics, i.e., protruding fruiting bodies. Maximum parsimony and maximum likelihood analysis showed that it did not cluster with any known species of Cytospora, so it is described as a new species. Cytospora sophorae is a previously reported species from Sophora, which is redescribed based on new isolates and additional observations. Another species was identified as C. chrysosperma, which is reported for the first time on Sophora, so Papilionaceae is shown to be a new host family for C. chrysosperma. The morphological affinities of these species with related taxa are discussed, while the phylogenetic relationships of these species with other fungus in the genus Cytospora were elucidated based on their internal transcribed spacer (ITS) rRNA region sequences.  相似文献   
2.
3.
4.
摘要 目的:探讨过表达CXCR4的人脐带间充质干细胞(human umbilical cord mesenchymal stem cell, hUC-MSCs)移植后对糖尿病肾病的治疗作用。方法:构建CXCR4的慢病毒表达载体,并建立过表达 CXCR4 的人脐带间充质干细胞(CXCR4-MSCs)。采用8周龄健康雌性SD大鼠75只,其中15只为正常对照组,60只为实验组。实验组糖尿病成模后一个月,将糖尿病实验大鼠60只随机分为4组:①移植CXCR4-MSCs组(CXCR4基因转染MSCs组),即CXCR4组;②移植null-MSCs组(空质粒未转染CXCR4基因的MSCs组),即null-MSCs;③移植MSCs组( MSCs组);④PBS组(未移植任何的MSCs,单纯PBS注射,PBS组)。将CXCR4-MSCs、null-MSCs及MSCs消化离心,取含1×106个细胞悬液经尾静脉分别注入CXCR4-MSCs组、null-MSCs组及MSCs组大鼠体内,PBS组注射l mL PBS。干细胞治疗8周后,处死五组大鼠。各组大鼠处死前放代谢笼留取24 h尿,计算尿量,保存送检。处死前尾静脉采血检测血糖、称体重并记录。观察血糖、肾脏肥大指数、肾重、体重、24小时尿蛋白排泄量,并观察肾脏组织病理学改变。结果:60只SD雌性大鼠糖尿病模型成功率达100%,至实验8周糖尿病大鼠总共死亡14只,存活率达76.67%。实验开始后的8周,所有CXCR4组、Null-MSCs组、MSCs组、PBS组大鼠与正常组比较,体重均明显减轻(P<0.01),血糖明显升高(P<0.01)。MSCs治疗后8周,除正常组外,其余各组大鼠血糖、肾重、肾重/体重比、24小时尿蛋白均显著增高,体重显著降低(P<0.05);与PBS组相比,CXCR4组、null-MSCs组,MSCs组大鼠的肾重、肾重/体重比、24小时尿蛋白均明显降低(P<0.05),体重无明显增加,血糖无明显降低(P>0.05)。CXCR4组大鼠的肾重、肾重/体重比、24小时尿蛋白较除正常组外的各组均明显降低(P<0.05)。糖尿病成模后,给予大鼠尾静脉注射干细胞悬液或等量培养液,注射后8周,除正常组外,其余各组PAS染色可见大鼠肾小球肥大,肾小球基底膜增厚、系膜增生、系膜基质增多,部分肾小球出现明显硬化,符合糖尿病肾病中期病理表现。CXCR4组大鼠肾小球系膜基质增生较其余各组大鼠减少(P<0.05)。结论:转染CXCR4的MSCs可改善糖尿病肾病。  相似文献   
5.
The action of the gene Sr6 for stem rust resistance in wheat is affected by temperature, light, and the particular susceptible parent with which a line carrying Sr6 has been crossed. Two experiments were carried out to determine whether the effect of the susceptible parents was due to modifier genes, the general genetic background, or interallelic interactions. The data indicated that the susceptible parents carried different sr6 alleles that interacted with Sr6, possibly in a paramutation-like process. In the course of the study, a number of anomalous results were obtained that may be due to the action of transposable elements. Received: 18 February 2000 / Accepted: 31 October 2000  相似文献   
6.
Changsung Kim 《BMB reports》2015,48(5):256-265
Cardiovascular and neurodegenerative diseases are major health threats in many developed countries. Recently, target tissues derived from human embryonic stem (hES) cells and induced pluripotent stem cells (iPSCs), such as cardiomyocytes (CMs) or neurons, have been actively mobilized for drug screening. Knowledge of drug toxicity and efficacy obtained using stem cell-derived tissues could parallel that obtained from human trials. Furthermore, iPSC disease models could be advantageous in the development of personalized medicine in various parts of disease sectors. To obtain the maximum benefit from iPSCs in disease modeling, researchers are now focusing on aging, maturation, and metabolism to recapitulate the pathological features seen in patients. Compared to pediatric disease modeling, adult-onset disease modeling with iPSCs requires proper maturation for full manifestation of pathological features. Herein, the success of iPSC technology, focusing on patient-specific drug treatment, maturation-based disease modeling, and alternative approaches to compensate for the current limitations of patient iPSC modeling, will be further discussed. [BMB Reports 2015; 48(5): 256-265]  相似文献   
7.
Human pluripotent stem cells (PSCs) are presumed to have robust DNA repair pathways to ensure genome stability. PSCs likely need to protect against mutations that would otherwise be propagated throughout all tissues of the developing embryo. How these cells respond to genotoxic stress has only recently begun to be investigated. Although PSCs appear to respond to certain forms of damage more efficiently than somatic cells, some DNA damage response pathways such as the replication stress response may be lacking. Not all DNA repair pathways, including the DNA mismatch repair (MMR) pathway, have been well characterized in PSCs to date. MMR maintains genomic stability by repairing DNA polymerase errors. MMR is also involved in the induction of cell cycle arrest and apoptosis in response to certain exogenous DNA-damaging agents. Here, we examined MMR function in PSCs. We have demonstrated that PSCs contain a robust MMR pathway and are highly sensitive to DNA alkylation damage in an MMR-dependent manner. Interestingly, the nature of this alkylation response differs from that previously reported in somatic cell types. In somatic cells, a permanent G2/M cell cycle arrest is induced in the second cell cycle after DNA damage. The PSCs, however, directly undergo apoptosis in the first cell cycle. This response reveals that PSCs rely on apoptotic cell death as an important defense to avoid mutation accumulation. Our results also suggest an alternative molecular mechanism by which the MMR pathway can induce a response to DNA damage that may have implications for tumorigenesis.  相似文献   
8.
The recovering of an adequate number of hematopoietic stem cells after cryopreservation is considered pivotal for successful transplantation. Various factors could influence the recovery of HSC following processing and cryopreservation. Therefore, leukapheresis product from thirty patients was cryopreserved in 10% DMSO in cryopreservation bags for their autologous bone marrow transplantation, and 2 ml were cryopreserved in cryovials for post-thaw viability assessment by flow cytometry. The percentage of viable HSCs recovered post-cryopreservation in leukapheresis product was significantly influenced by the concentration of the total nucleated cells cryopreserved per volume. Patients receiving a higher rate of viable HSCs resulted in earlier engraftment of both neutrophils and platelets, so they have been discharged earlier from the hospital. Furthermore, Storage temperature and duration played a role in the recovery of these cells and for the support of the findings, age of the patient at the time of collection did not show any impact on the recovery of this HSC post-cryopreservation. In conclusion, various influencing factors must be taken into consideration during the cryopreservation of HSCs, especially for poor mobilizing patients with a low number of collected hematopoietic stem cells.  相似文献   
9.
The efficiency of regenerative medicine can be ameliorated by improving the biological performances of stem cells before their transplantation. Several ex-vivo protocols of non-damaging cell hypoxia have been demonstrated to significantly increase survival, proliferation and post-engraftment differentiation potential of stem cells. The best results for priming cultured stem cells against a following, otherwise lethal, ischemic stress have been obtained with brief intermittent episodes of hypoxia, or anoxia, and reoxygenation in accordance with the extraordinary protection afforded by the conventional maneuver of ischemic preconditioning in severely ischemic organs. These protocols of hypoxic preconditioning can be rather easily reproduced in a laboratory; however, more suitable pharmacological interventions inducing stem cell responses similar to those activated in hypoxia are considered among the most promising solutions for future applications in cell therapy. Here we want to offer an up-to-date review of the molecular mechanisms translating hypoxia into beneficial events for regenerative medicine. To this aim the involvement of epigenetic modifications, microRNAs, and oxidative stress, mainly activated by hypoxia inducible factors, will be discussed. Stem cell adaptation to their natural hypoxic microenvironments (niche) in healthy and neoplastic tissues will be also considered.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号