首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2618篇
  免费   144篇
  国内免费   259篇
  2023年   19篇
  2022年   40篇
  2021年   52篇
  2020年   31篇
  2019年   50篇
  2018年   40篇
  2017年   69篇
  2016年   87篇
  2015年   73篇
  2014年   106篇
  2013年   128篇
  2012年   78篇
  2011年   105篇
  2010年   108篇
  2009年   217篇
  2008年   202篇
  2007年   208篇
  2006年   209篇
  2005年   165篇
  2004年   147篇
  2003年   113篇
  2002年   87篇
  2001年   64篇
  2000年   63篇
  1999年   57篇
  1998年   55篇
  1997年   48篇
  1996年   42篇
  1995年   39篇
  1994年   36篇
  1993年   39篇
  1992年   19篇
  1991年   31篇
  1990年   26篇
  1989年   31篇
  1988年   19篇
  1987年   17篇
  1986年   18篇
  1985年   11篇
  1984年   8篇
  1983年   8篇
  1982年   8篇
  1981年   10篇
  1980年   7篇
  1979年   7篇
  1978年   6篇
  1977年   4篇
  1976年   4篇
  1973年   3篇
  1952年   2篇
排序方式: 共有3021条查询结果,搜索用时 15 毫秒
1.
Freshwater ecosystem service is essential to human’s survival and development. Many studies have documented the spatial differences in the supply and demand of ecosystem services and proposed the concept of ecosystem services flows. However, few studies characterize freshwater ecosystem service flow quantitatively. Therefore, our paper aims to quantify the effects of freshwater ecosystem service flow on downstream areas. We developed a freshwater ecosystem service flow model and applied it in the Beijing–Tianjin–Hebei (BTH) region, China, for the year of 2000, 2005, and 2010. We assessed the regional water security with an improved freshwater security index by integrating freshwater service provision, consumption and flow; and found that most areas of the BTH region (69.2%) were affected by upstream freshwater flows. The areas achieving water security in the region also expanded to 66.9%, 66.1%, and 71.3%, which were 6.4%, 6.8% and 5.7% increments compared to no-flow situation, in 2000, 2005 and 2010, respectively. Setting quota for human water consumption is suggested to further improve water security. These results highlight the need to fully understand the connections between distant freshwater ecosystem service provision and local freshwater ecosystem service consumption. This approach may also help managers to choose more sustainable strategies for critical freshwater resource management across different regions.  相似文献   
2.
Fractal geometry is a potentially valuable tool for quantitatively characterizing complex structures. The fractal dimension (D) can be used as a simple, single index for summarizing properties of real and abstract structures in space and time. Applications in the fields of biology and ecology range from neurobiology to plant architecture, landscape structure, taxonomy and species diversity. However, methods to estimate the D have often been applied in an uncritical manner, violating assumptions about the nature of fractal structures. The most common error involves ignoring the fact that ideal, i.e. infinitely nested, fractal structures exhibit self-similarity over any range of scales. Unlike ideal fractals, real-world structures exhibit self-similarity only over a finite range of scales.Here we present a new technique for quantitatively determining the scales over which real-world structures show statistical self-similarity. The new technique uses a combination of curve-fitting and tests of curvilinearity of residuals to identify the largest range of contiguous scales that exhibit statistical self-similarity. Consequently, we estimate D only over the statistically identified region of self-similarity and introduce the finite scale- corrected dimension (FSCD). We demonstrate the use of this method in two steps. First, using mathematical fractal curves with known but variable spatial scales of self-similarity (achieved by varying the iteration level used for creating the curves), we demonstrate that our method can reliably quantify the spatial scales of self-similarity. This technique therefore allows accurate empirical quantification of theoretical Ds. Secondly, we apply the technique to digital images of the rhizome systems of goldenrod (Solidago altissima). The technique significantly reduced variations in estimated fractal dimensions arising from variations in the method of preparing digital images. Overall, the revised method has the potential to significantly improve repeatability and reliability for deriving fractal dimensions of real-world branching structures.  相似文献   
3.
ObjectiveThe purpose of this work is to evaluate the impact of optimization of magnification on performance parameters of the variable resolution X-ray (VRX) CT scanner.MethodsA realistic model based on an actual VRX CT scanner was implemented in the GATE Monte Carlo simulation platform. To evaluate the influence of system magnification, spatial resolution, field-of-view (FOV) and scatter-to-primary ratio of the scanner were estimated for both fixed and optimum object magnification at each detector rotation angle. Comparison and inference between these performance parameters were performed angle by angle to determine appropriate object position at each opening half angle.ResultsOptimization of magnification resulted in a trade-off between spatial resolution and FOV of the scanner at opening half angles of 90°–12°, where the spatial resolution increased up to 50% and the scatter-to-primary ratio decreased from 4.8% to 3.8% at a detector angle of about 90° for the same FOV and X-ray energy spectrum. The disadvantage of magnification optimization at these angles is the significant reduction of the FOV (up to 50%). Moreover, magnification optimization was definitely beneficial for opening half angles below 12° improving the spatial resolution from 7.5 cy/mm to 20 cy/mm. Meanwhile, the FOV increased by more than 50% at these angles.ConclusionIt can be concluded that optimization of magnification is essential for opening half angles below 12°. For opening half angles between 90° and 12°, the VRX CT scanner magnification should be set according to the desired spatial resolution and FOV.  相似文献   
4.
Freshwater stream systems are under immense pressure from various anthropogenic impacts, including climate change. Stream systems are increasingly being altered by changes to the magnitude, timing, frequency, and duration of their thermal regimes, which will have profound impacts on the life-history dynamics of resident biota within their home range. Although temperature regimes have a significant influence on the biology of instream fauna, large spatio-temporal temperature datasets are often reduced to a single metric at discrete locations and used to describe the thermal regime of a system; potentially leading to a significant loss of information crucial to stream management. Models are often used to extrapolate these metrics to unsampled locations, but it is unclear whether predicting actual daily temperatures or an aggregated metric of the temperature regime best describes the complexity of the thermal regime. We fit spatial statistical stream-network models (SSNMs), random forest and non-spatial linear models to stream temperature data from the Upper Condamine River in QLD, Australia and used them to semi-continuously predict metrics describing the magnitude, duration, and frequency of the thermal regime through space and time. We compared both daily and aggregated temperature metrics and found that SSNMs always had more predictive ability than the random forest models, but both models outperformed the non-spatial linear model. For metrics describing thermal magnitude and duration, aggregated predictions were most accurate, while metrics describing the frequency of heating events were better represented by metrics based on daily predictions generated using a SSNM. A more comprehensive representation of the spatio-temporal thermal regime allows researchers to explore new spatio-temporally explicit questions about the thermal regime. It also provides the information needed to generate a suite of ecologically meaningful metrics capturing multiple aspects of the thermal regime, which will increase our scientific understanding of how organisms respond to thermal cues and provide much-needed information for more effective management actions.  相似文献   
5.
Abstract. Plant cover was visually estimated by five observers, independent of each other, in a species‐rich grassland in the Bílé Karpaty Mts., southeastern Czech Republic, in seven plots ranging from 0.001 to 4 m2. Variation of total plant cover among the observers was high at small scales: 0.001–0.016 m2; coefficient of variation, CV = 35 to 45%, but much lower at larger scales: 0.06–4 m2; CV = 7 to 15%. Differences between visual estimates of plant cover of individual species made by different observers were affected by plot size, total cover and morphology of particular plants. CV of the cover of individual species ranged from 0 to 225% and decreased with increasing plot size. For abundant plants the CV attained ca. 50%, independent of plot size. In spite of a very high number of sterile plants with similar leaf morphology and colour, the observed variation in cover estimates in the studied grassland was comparable with results reported from other vegetation types. Differences between estimates by individual observers were often larger than usual year to year changes in undisturbed grasslands. Therefore, I suggest that to avoid difficulties in the interpretation of results based on plant cover data obtained from visual estimates, several observers should always work together, adjusting their extreme estimates.  相似文献   
6.
7.
《Developmental cell》2021,56(16):2273-2283.e3
  1. Download : Download high-res image (162KB)
  2. Download : Download full-size image
  相似文献   
8.
The abundance of Cynodon dactylon was recorded in 50 plots presenting different geomorphological conditions and along a transect of 16 500 2×2 cm contiguous quadrats within a small basin 330 m in length, in the granite pediment of the Sierra de Guadarrama (Central Spain). Soil analyses were undertaken on samples from the 50 plots and the soil information matrix obtained was analysed using Principal Components Analysis and Discriminant Analysis. Results showed that in the Mediterranean pastures Cynodon dactylon was restricted to deep, well developed soils with relatively high values of cations, conductivity and organic matter, and could be used as an indicator of such soil conditions in these grasslands. The spatial pattern of the species was analysed using New Local Variances which revealed the existence of a small-scale pattern, ranging from 8 to 18 cm, present at all levels of the analysis. The size of small-scale patterns was positively correlated with species abundance and was interpreted as a relation between plant vigour and favourable soil conditions.I would like to thank Professor González Bernáldez for his interest and encouragement.  相似文献   
9.
ContextModerate-grained data may not always represent landscape structure in adequate detail which could cause misleading results. Certain metrics have been shown to be predictable with changes in scale; however, no studies have verified such predictions using independent fine-grained data.ObjectivesOur objective was to use independently derived land cover datasets to assess relationships between metrics based on fine- and moderate-grained data for a range of analysis extents. We focus on metrics that previous literature has shown to have predictable relationships across scales.MethodsThe study area was located in eastern Connecticut. We compared a 1 m land cover dataset to a 30 m resampled dataset, derived from the 1 m data, as well as two Landsat-based datasets. We examined 11 metrics which included cover areas and patch metrics. Metrics were analyzed using analysis extents ranging from 100 to 1400 m in radius.ResultsThe resampled data had very strong linear relationships to the 1 m data, from which it was derived, for all metrics regardless of the analysis extent size. Landsat-based data had strong correlations for most cover area metrics but had little or no correlation for patch metrics. Increasing analysis areas improved correlations.ConclusionsRelationships between coarse- and fine-grained data tend to be much weaker when comparing independent land cover datasets. Thus, trends across scales that are found by resampling land cover are likely to be unsuitable for predicting the effects of finer-scale elements in the landscape. Nevertheless, coarser data shows promise in predicting fine-grained for cover area metrics provided the analysis area used is sufficiently large.  相似文献   
10.
Spatial stratified heterogeneity, referring to the within-strata variance less than the between strata-variance, is ubiquitous in ecological phenomena, such as ecological zones and many ecological variables. Spatial stratified heterogeneity reflects the essence of nature, implies potential distinct mechanisms by strata, suggests possible determinants of the observed process, allows the representativeness of observations of the earth, and enforces the applicability of statistical inferences. In this paper, we propose a q-statistic method to measure the degree of spatial stratified heterogeneity and to test its significance. The q value is within [0,1] (0 if a spatial stratification of heterogeneity is not significant, and 1 if there is a perfect spatial stratification of heterogeneity). The exact probability density function is derived. The q-statistic is illustrated by two examples, wherein we assess the spatial stratified heterogeneities of a hand map and the distribution of the annual NDVI in China.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号