首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7242篇
  免费   1054篇
  国内免费   2063篇
  2023年   145篇
  2022年   148篇
  2021年   216篇
  2020年   290篇
  2019年   309篇
  2018年   347篇
  2017年   367篇
  2016年   337篇
  2015年   383篇
  2014年   417篇
  2013年   535篇
  2012年   325篇
  2011年   385篇
  2010年   250篇
  2009年   435篇
  2008年   405篇
  2007年   449篇
  2006年   523篇
  2005年   461篇
  2004年   377篇
  2003年   341篇
  2002年   270篇
  2001年   228篇
  2000年   211篇
  1999年   195篇
  1998年   183篇
  1997年   166篇
  1996年   131篇
  1995年   157篇
  1994年   141篇
  1993年   127篇
  1992年   144篇
  1991年   103篇
  1990年   105篇
  1989年   62篇
  1988年   63篇
  1987年   65篇
  1986年   72篇
  1985年   93篇
  1984年   78篇
  1983年   42篇
  1982年   77篇
  1981年   50篇
  1980年   58篇
  1979年   48篇
  1978年   9篇
  1977年   8篇
  1976年   5篇
  1973年   7篇
  1971年   4篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
1.
The effect of the alkyl side-chain length on the structural and optoelectronic properties of poly[N-9′-heptadecanyl-27-carbazole-alt-55-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT) conjugated oligomers have been studied by density functional theory (DFT) and time-dependent density functional theory (TD-DFT). The study was carried out by varying the length of alkyl side-chain attached to the nitrogen atom of the carbazole unit of the PCDTBT oligomers. The structural properties of the optimised oligomers were then studied by determining the bond-length alternation and dihedral angles (Φ) for various side-chain lengths. Total energy calculations for the determination of HOMO energy (EHOMO), LUMO energy (ELUMO), and fundamental energy gap (EGap) were performed using DFT at the B3LYP/6-31G(d), while the first singlet excitation energies (EOpt) were calculated by TD-DFT also at the same level of theory. It was observed that there are no significant structural changes occurring as the alkyl chain lengths are varied. For the electronic properties, very small differences (i.e. ~0.01 eV) were observed for EGap and EOpt while the exciton binding energies (EB) were virtually the same. The results suggest that using shorter alkyl side-chains do not significantly affect the structural and optoelectronic properties of the carbazole-benzothiadiazole based polymer. The observations can aid future computational design studies of analogous systems by reducing large structures thus decreasing computational costs.  相似文献   
2.
In many tropical regions, slash‐and‐burn agriculture is considered as a driver of deforestation; the forest is converted into agricultural land by cutting and burning the trees. However, the fields are abandoned after few years because of yield decrease and weed invasion. Consequently, new surfaces are regularly cleared from the primary forest. We propose a reclamation strategy for abandoned fields allowing and sustaining re‐cultivation. In the dry region of south‐western Madagascar, we tested, according to a split‐plot design, an alternative selective slash‐and‐burn cultivation technique coupled with compost amendment on 30–year‐old abandoned fields. Corn plants (Zea mays L.) were grown on four different types of soil amendments: no amendment (control), compost, ashes (as in traditional slash‐and‐burn cultivation), and compost + ashes additions. Furthermore, two tree cover treatments were applied: 0% tree cover (as in traditional slash‐and‐burn cultivation) and 50% tree cover (selective slash‐and‐burn). Both corn growth and soil fertility parameters were monitored during the growing season 2015 up to final harvest. The amendment compost + ashes strongly increased corn yield, which was multiplied by 4–5 in comparison with ashes or compost alone, reaching 1.5 t/ha compared to 0.25 and 0.35 t/ha for ashes and compost, respectively. On control plots, yield was negligible as expected on these degraded soils. Structural equation modeling evidenced that compost and ashes were complementary fertilizing pathways promoting soil fertility through positive effects on soil moisture, pH, organic matter, and microbial activity. Concerning the tree cover treatment, yield was reduced on shaded plots (50% tree cover) compared to sunny plots (0% tree cover) for all soil amendments, except ashes. To conclude, our results provide empirical evidence on the potential of recultivating tropical degraded soils with compost and ashes. This would help mitigating deforestation of the primary forest by increasing lifespan of agricultural lands.  相似文献   
3.
4.
Indicators of landscape condition should be selected based on their sensitivity to environmental changes and their capacity to provide early warning detection of those changes. We assessed the performance of a suite of spatial-pattern metrics selected to quantify the condition of the ridge-slough landscape in the Everglades (South Florida, USA). Spatial pattern metrics (n = 14) that describe landscape composition, geometry and hydrologic connectivity were enumerated from vegetation maps of twenty-five 2 × 2 km primary sampling units (PSUs) that span a gradient of hydrologic and ecological condition across the greater Everglades ecosystem. Metrics were assessed in comparison with field measurements from each PSU of landscape condition obtained from regional surveys of soil elevation, which have previously been shown to capture dramatic differences between conserved and degraded locations. Elevation-based measures of landscape condition included soil elevation bi-modality (BISE), a binary measure of landscape condition, and also the standard deviation of soil elevation (SDSE), a continuous measure of condition. Metric performance was assessed based on the strength (sensitivity) and shape (leading vs. lagging) of the relationship between spatial pattern metrics and these elevation-based measures. We observed significant logistic regression slopes with BISE for only 4 metrics (slough width, ridge density, directional connectivity index – DCI, and least flow cost – LFC). More significant relationships (n = 8 metrics) were observed with SDSE, with the strongest associations for slough density, mean ridge width, and the average length of straight flow, as well as for a suite of hydrologic connectivity metrics (DCI, LFC and landscape discharge competence – LDC). Leading vs. lagging performance, inferred from the curvature of the association obtained from the exponent of fitted power functions, suggest that only DCI was a leading metric of the loss of soil elevation variation; most metrics were indeterminate, though some were clearly lagging. Our findings support the contention that soil elevation changes from altered peat accretion dynamics precede changes in landscape pattern, and offer insights that will enable efficient monitoring of the ridge-slough landscape as part of the ongoing Everglades restoration effort.  相似文献   
5.
Modeling soil detachment rates at the regional scale is important for better understanding of the processes of erosion and the development of erosion models. Soil erodibility is an important factor for predicting soil loss, but its direct measurement at the watershed scale is difficult, time-consuming and costly. This study used stepwise multiple-linear regression (MLR) and artificial neural networks (ANNs) to model Water Erosion Prediction Project (WEPP) soil erodibility parameters, including the baseline inter-rill erodibility (Kib), baseline rill erodibility (Krb) and critical shear stress (τcb) of cropland conditions in calcareous soils of northwest Iran. Simulated inter-rill and rill erosion experiments were conducted at 100 locations with three replications. Kib, Krb and τcb and basic soil properties were measured at each location. Auxiliary variables related to soil erodibility were derived from a Landsat 7 satellite image and a 30 m × 30 m digital elevation model (DEM). MLR and ANN models were employed to predict Kib, Krb and τcb using two groups of input variables: i) more easily measurable basic soil properties (pedo-transfer functions (PTFs)) and ii) more easily measurable basic soil properties and auxiliary data (soil spatial prediction functions (SSPFs)). The results indicated that the WEPP models performed poorly in comparison to the derived models. PTFs and SSPFs generated from ANN models provided more reliable predictions than the MLR models. ANN-based SSPF models yielded the best results (with the highest R2 and lowest RMSE values) for predicting Kib and Krb. ANN-based PTF model performed reasonably well for predicting τcb. These results show that information from terrain attributes and remote sensing data are potential auxiliary variables for improving prediction of soil erodibility parameters.  相似文献   
6.
Although an understanding of the quantity and quality of sedimentary organic matter (SOM) pools is necessary to design sound environmental management strategies for lacustrine systems, the characterization of organic matter sources and the assessment of their relative contributions to eutrophic and inland lake sediments remain insufficient. In this study, the contribution of potential organic matter sources to sediments in shallow and hypereutrophic lake Taihu, China was assessed on the molecular level using source-specific fatty acid biomarkers. The results indicated that SOM was composed mainly of terrestrial plants with a maximal contribution of 45.3 ± 2.4% to the total organic carbon, which accounted for approximately 66% among the determined organic matter sources. Evidence suggests the terrestrial plants remained in a fresh state in surface sediments: the correlation (R2 = 0.62, p < 0.05) between bacterial and terrestrial plant carbon was strong. On the other hand, aquatic plant and bacterial carbon contributed 5–15% to the total organic carbon, which was followed by the faint contribution (<5% of total organic carbon) of algae-derived organic carbon including cyanobacteria, diatoms, and dinoflagellates. The results provided details of the contributions of SOM sources, illustrating the usefulness of fatty acid biomarkers in discriminating organic matter sources within lake environments. Although organic matter sources of sediments varied in spatial and temporal patterns, the strong correlation between terrestrial plant and total organic carbon (R2 = 0.60, p < 0.05) indicates that terrestrial plants were the dominant source in lake sediments.  相似文献   
7.
Macrophomina phaseolina (Tassi) Goid. causes seedling blight, charcoal rot, leaf blight, stem and pod rot on over 500 plant species in different parts of the world. The pathogen survives as sclerotia formed in host tissues which are released into the soil as tissue decay. Low soil moisture is considered the more important predisposing factor for M. phaseolina-induced diseases than high temperature. The intensity of the disease on a crop is related to the population of viable sclerotia in the soil and abiotic factors. The influence of various management strategies in reducing the number of viable propagules of the pathogen in the soil has been studied in order to minimize the impact of the disease. Any management approach that reduces inoculum density in the soil may reduce disease incidence on the host. However, to reduce inoculum density, quantitative determination of viable propagules from soil is necessary in order to understand the effect of management strategies on the population dynamics of this pathogen. Considerable work has been done on organic amendments, changing crop sequences with tolerant crops, fumigants, herbicides and tillage in managing M. phaseolina populations in the soil and the resulting disease. Solarization has been used in controlling M. phaseolina in different countries where this pathogen is causing disease on economically valuable crops. However, this method of soil disinfestation was effective in eliminating viable populations at the top soil layer although by combining other approaches its effectiveness was improved at lower soil depth. Use of biological control agents with or without organic amendments or after solarization has emerged to be a practical management approach in the control of M. phaseolina. In this paper, an attempt has been made to review those research findings where the influence of various management approaches on survival of M. phaseolina mainly sclerotia have been investigated.  相似文献   
8.
Zwitterions, a class of materials that contain covalently bonded cations and anions, have been extensively studied in the past decades owing to their special features, such as excellent solubility in polar solvents, for solution processing and dipole formation for the transfer of carriers and ions. Recently, zwitterions have been developed as electrode modifiers for organic solar cells (OSCs), perovskite solar cells (PVSCs), and organic light‐emitting devices (OLEDs), as well as electrolyte additives for lithium ion batteries (LIBs). With the rapid advances of zwitterionic materials, high‐performance devices have been constructed with enhanced efficiencies by introducing them as interface layers and electrolyte additives. In this review, recent progress in OSCs, PVSCs, OLEDs, and LIBs by using zwitterions is highlighted. The authors also elaborate the role of various zwitterionic materials as interfacial layers and additives for highly efficient OSCs, PVSCs, OLEDs, and LIBs. This article presents an overview of device performance of zwitterionic materials. The structure–property relationship is also discussed. Finally, the prospects of zwitterion materials are also addressed.  相似文献   
9.
富硒益生菌的功效研究进展   总被引:1,自引:0,他引:1  
硒是人体必需的微量元素,对人体健康有重要作用。益生菌能够将硒元素转化为有机硒,降低硒的毒性,同时硒又提高了益生菌的生物活性,富硒益生菌具备了硒和益生菌的双重功效。本文主要综述了近年来富硒益生菌的功效,如抗氧化、抑制有害菌、调节肠道菌群、抗癌等。  相似文献   
10.
In the global transition to a sustainable low‐carbon economy, CO2 capture and storage technology still plays a critical role for deep emission reduction, particularly for the stationary sources in power generation and industry. However, for small and mobile emission sources in transportation, CO2 capture is not suitable and it is more practical to use relatively clean energy, such as natural gas. In these two low‐carbon energy technologies, designing highly selective sorbents is one of the key and most challenging steps. Toward this end, metal‐organic frameworks (MOFs) have received continuously intensive attention in the past decades for their highly porous and diversified structures. In this review, the recent progress in developing MOFs for selective CO2 capture from post‐combustion flue gas and CH4 storage for vehicle applications are summarized. For CO2 capture, several promising strategies being used to improve CO2 adsorption uptake at low pressures are highlighted and compared. In addition, the conventional and novel regeneration techniques for MOFs are also discussed. In the case of CH4 storage, the flexible and rigid MOFs, whose CH4 storage capacity is close to the target set by U.S. Department of Energy are particularly emphasized. Finally, the challenge of using MOFs for CH4 storage is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号