首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   515篇
  免费   7篇
  国内免费   15篇
  2022年   4篇
  2021年   7篇
  2020年   11篇
  2019年   10篇
  2018年   12篇
  2017年   5篇
  2016年   7篇
  2015年   13篇
  2014年   30篇
  2013年   24篇
  2012年   16篇
  2011年   28篇
  2010年   19篇
  2009年   28篇
  2008年   30篇
  2007年   30篇
  2006年   23篇
  2005年   26篇
  2004年   32篇
  2003年   18篇
  2002年   17篇
  2001年   9篇
  2000年   11篇
  1999年   11篇
  1998年   10篇
  1997年   10篇
  1996年   6篇
  1995年   4篇
  1994年   9篇
  1993年   6篇
  1992年   4篇
  1991年   5篇
  1990年   5篇
  1989年   5篇
  1988年   8篇
  1987年   3篇
  1986年   5篇
  1985年   3篇
  1984年   6篇
  1983年   1篇
  1982年   3篇
  1981年   6篇
  1980年   5篇
  1979年   2篇
  1978年   4篇
  1977年   6篇
排序方式: 共有537条查询结果,搜索用时 40 毫秒
1.
Summary Examination of rib tissue of developing flower buds and flowers ofIpomoea tricolor utilizing the light and electron microscopes resulted in the identification of a group of inner epidermal cells which undergo dynamic structural changes during the two days prior to flowering, during flowering and during flower fading. Over a three-day period these cells undergo enlargement, modification of shape, reduction in wall thickness, extensive vacuolation and autophagic activity, transition from a ribosome-rich cytoplasm with stacked RER and dictyosome complexes to one with only a few isolated organelles and a limited number of ribosomes, and modification of the tonoplast membrane. In contrast, other cells of the rib vacuolate prior to flowering and exhibit no further changes. The structural changes in the inner epidermal cells suggest that they affect the turgor status of the cells and initiate the opening and eventual closing of the flower.  相似文献   
2.
Summary Tannin, cell wall, and nitrogen composition of green foliage and needle litter of similar-aged Douglas-fir (Pseudotsuga menziesii Mirb. Franco) from two stands differing in density and crown closure were compared. Trees in the closed-canopy stand had a lower basal area growth rate than those in the open-canopy stand. Stands did not differ in wood basal area/ha or forest floor C/N ratios, but the closed-canopy stand had a significantly larger accumulation of forest floor biomass and significantly higher levels of field-extractable nitrogen and nitrogen mineralization rates. Green foliage from trees in the closed-canopy stand had significantly lower nitrogen, astringency, and lignin contents, but higher cellulose concentration than trees in the open-canopy stand. These trends, inconsistent with the inverse relationship often observed between nitrogen and polyphenol contents of foliage, may result from differences in relative resource availability in the two stands. In contrast to green foliage, needle litter from the two stands had comparable contents of nitrogen, cellulose, and lignin, but astringency was significantly higher in litter from the closed-canopy stand. It is suggested that, within the constraints imposed by site conditions, evergreens may alter the tannin composition of senescing foliage, potentially affecting herbivory and decomposition differently.  相似文献   
3.
Cellular senescence is a stable cell proliferation arrest induced by a variety of stresses including telomere shortening, oncogene activation and oxidative stress. This process plays a crucial role in many physiopathological contexts, especially during aging when cellular senescence favors development of age-related diseases, shortening lifespan. However, the molecular and cellular mechanisms controlling senescence are still a matter of active research. In the last decade, there has been emerging literature indicating a key involvement of calcium signaling in cellular senescence. In this review we will initially give an account of the direct evidence linking calcium and the regulation of senescence. We will then review our current knowledge on the role of calcium in some senescence-associated features and physiopathological conditions, which will shed light on additional ways in which calcium signaling is implicated in cellular senescence.  相似文献   
4.
Current studies are focusing on the anti-cancerous properties of natural bioactive compounds, primarily those included in the human diet. These compounds have the potential to alter the redox balance that can hinder cancer cell's growth. In cancer cells, an abnormal rate of ROS production is balanced with higher antioxidant activities, which if not maintained, results in cancer cells being prone to cell death due to oxidative stress. Here, we have analyzed the effects of Chrysin and Capsaicin on the HeLa cells viability and cellular redox signaling. Both these compounds stimulate cellular and mitochondrial ROS overproduction that perturbs the cellular redox state and results in mitochondrial membrane potential loss. Apart from this, these compounds induce cell cycle arrest and induce premature senescence, along with the overexpression of p21, p53, and p16 protein at lower concentration treatment of Chrysin or Capsaicin. Moreover, at higher concentration treatment with these compounds, pro-apoptotic activity was observed with the high level of Bax and cleaved caspase-3 along with suppression of the Bcl-2 protein levels. In-Silico analysis with STITCH v5 also confirms the direct interaction of Chrysin and Capsaicin with target protein p53. This suggests that Chrysin and Capsaicin trigger an increase in mitochondrial ROS, and p53 interaction leading to premature senescence and apoptosis in concentration dependent manner and have therapeutic potential for cancer treatment.  相似文献   
5.
Ageing and longevity is a neglected field of crustacean biology. Information on longevity is available for less than 2% of the extant species of the Decapoda. Maximum ages reliably determined range from 40 days to 72 years corresponding to a life span difference of a factor of 650. The shortest-lived decapods are planktonic dendrobranchiate shrimps, and particularly long-lived species with life spans of decades are found in the Astacidea. Most decapods seem to live for 1-10 years. High geographical latitude, the deep sea and freshwater caves promote longevity. The majority of the Decapoda is indeterminately growing and presumably characterized by negligible senescence. The adults of the determinately growing decapods like some brachyuran crabs suffer from mechanical senescence and are unable to regenerate lost appendages. The decapod crustaceans have developed many effective anti-ageing mechanisms including moulting, detoxification of free radicals, removal of cellular waste, renewal of tissues by life-long stem cell activity, regeneration of appendages, detoxification of environmental pollutants and isolation of pathogens and diseased tissue areas by melanisation and encapsulation. Age related diseases including cancer are virtually unknown. The present compilation of data on longevity and senescence in decapods is the first one that covers the whole spectrum of a higher invertebrate taxon. It is hoped to provide an interesting source of information for carcinologists and biogerontologists. Further improvement of knowledge on ageing and longevity in the Decapoda would be beneficial for crustacean aquaculture, fisheries and ecological modelling. Some decapods even have good potential to become models for general ageing research.  相似文献   
6.
Little is known about the biological functions of the phospholipase A2 receptor (PLA2R1) except that it has the ability to bind a few secreted phospholipases A2 (sPLA2′s). We have previously shown that PLA2R1 regulates senescence in normal human cells. In this study, we investigated the ability of PLA2R1 to control cancer cell growth. Analysis of expression in cancer cells indicates a marked PLA2R1 decrease in breast cancer cell lines compared to normal or nontransformed human mammary epithelial cells. Accordingly, PLA2R1 ectopic expression in PLA2R1-negative breast cancer cell lines led to apoptosis, whereas a prosenescence response was predominantly triggered in normal cells. PLA2R1 structure–function studies and the use of chemical inhibitors of sPLA2-related signaling pathways suggest that the effect of PLA2R1 is sPLA2-independent. Functional experiments demonstrate that PLA2R1 regulation of cell death is driven by a reactive oxygen species (ROS)-dependent mechanism. While screening for ROS-producing complexes involved in PLA2R1 biological responses, we identified a critical role for the mitochondrial electron transport chain in PLA2R1-induced ROS production and cell death. Taken together, this set of data provides evidence for an important role of PLA2R1 in controlling cancer cell death by influencing mitochondrial biology.  相似文献   
7.
Broccoli (Brassica oleracea var. italica) deteriorates rapidly following harvest. The two plant hormones ethylene and cytokinin are known to act antagonistically on harvest-induced senescence in broccoli: ethylene by accelerating the process, and cytokinin by delaying it. To determine the level at which these hormones influenced senescence, we isolated and monitored the expression of genes normally associated with senescence in broccoli florets treated with exogenous 6-benzyl aminopurine (6-BAP), 1-aminocyclopropane-1-carboxylic acid (ACC), a combination of 6-BAP and ACC, and sucrose, in the five days following harvest. Exogenous 6-BAP caused both a reduction (BoACO) and an increase (BoACS) in ethylene biosynthetic gene expression. The expression of genes used as senescence markers, BoCP5 and BoMT1, was reduced, whereas BoCAB1 levels were maintained after harvest in response to exogenous 6-BAP. In addition, the expression of genes encoding sucrose transporters (BoSUC1 and BoSUC2) and carbohydrate metabolizing enzymes (BoINV1 and BoHK1) was also reduced upon 6-BAP feeding. Interestingly, the addition of ACC prevented the 6-BAP-induced increase in expression of BoACS, but 6-BAP negated the ACC-induced increase in expression of BoACO. The culmination of these results indicates a significant role for cytokinin in the delay of senescence. The implication that cytokinin regulates postharvest senescence in broccoli by inhibiting ethylene perception and/or biosynthesis, thus regulating carbohydrate transport and metabolism, as well as senescence-associated gene expression, is discussed and a model presented.  相似文献   
8.
Cbx7 is one of five mammalian orthologs of the Drosophila Polycomb. Cbx7 recognizes methylated lysine residues on the histone H3 tail and contributes to gene silencing in the context of the Polycomb repressive complex 1 (PRC1). However, our knowledge of Cbx7 post-translational modifications remains limited. Through combined biochemical and mass spectrometry approaches, we report a novel phosphorylation site on mouse Cbx7 at residue Thr-118 (Cbx7T118ph), near the highly conserved Polycomb box. The generation of a site-specific antibody to Cbx7T118ph demonstrates that Cbx7 is phosphorylated via MAPK signaling. Furthermore, we find Cbx7T118 phosphorylation in murine mammary carcinoma cells, which can be blocked by MEK inhibitors. Upon EGF stimulation, Cbx7 interacts robustly with other members of PRC1. To test the role of Cbx7T118 phosphorylation in gene silencing, we employed a RAS-induced senescence model system. We demonstrate that Cbx7T118 phosphorylation moderately enhances repression of its target gene p16. In summary, we have identified and characterized a novel MAPK-mediated phosphorylation site on Cbx7 and propose that mitogen signaling to the chromatin template regulates PRC1 function.  相似文献   
9.
10.
Recent studies demonstrated that simvastatin has antitumor properties in several types of cancer cells, mainly by inducing apoptosis and inhibiting growth. The arrest of proliferation is a feature of cellular senescence; however, the occurrence of senescence in melanoma cells upon simvastatin treatment has not been investigated until now. Our results demonstrated that exposure of human metastatic melanoma cells (WM9) to simvastatin induces a senescent phenotype, characterized by G1 arrest, positive staining for senescence-associated β-galactosidase assay, and morphological changes. Also, the main pathways leading to cell senescence were examined in simvastatin-treated human melanoma cells, and the expression levels of phospho-p53 and p21 were upregulated by simvastatin, suggesting that cell cycle regulators and DNA damage pathways are involved in the onset of senescence. Since simvastatin can act as a pro-oxidant agent, and oxidative stress may be related to senescence, we measured the intracellular ROS levels in WM9 cells upon simvastatin treatment. Interestingly, we found an increased amount of intracellular ROS in these cells, which was accompanied by elevated expression of catalase and peroxiredoxin-1. Collectively, our results demonstrated that simvastatin can induce senescence in human melanoma cells by activation of p53/p21 pathway, and that oxidative stress may be related to this process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号