首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4829篇
  免费   484篇
  国内免费   607篇
  2024年   2篇
  2023年   60篇
  2022年   79篇
  2021年   91篇
  2020年   124篇
  2019年   123篇
  2018年   134篇
  2017年   167篇
  2016年   162篇
  2015年   165篇
  2014年   200篇
  2013年   245篇
  2012年   162篇
  2011年   222篇
  2010年   145篇
  2009年   277篇
  2008年   266篇
  2007年   293篇
  2006年   262篇
  2005年   242篇
  2004年   185篇
  2003年   194篇
  2002年   149篇
  2001年   148篇
  2000年   136篇
  1999年   127篇
  1998年   133篇
  1997年   121篇
  1996年   108篇
  1995年   119篇
  1994年   91篇
  1993年   134篇
  1992年   102篇
  1991年   92篇
  1990年   90篇
  1989年   71篇
  1988年   54篇
  1987年   70篇
  1986年   68篇
  1985年   50篇
  1984年   59篇
  1983年   21篇
  1982年   50篇
  1981年   27篇
  1980年   40篇
  1979年   24篇
  1978年   17篇
  1977年   12篇
  1976年   4篇
  1970年   1篇
排序方式: 共有5920条查询结果,搜索用时 31 毫秒
1.
Our objective was to evaluate the usefulness of the germination vs. the X-ray test in determining the initial viability of seeds of five wild species (Moringa peregrina, Abrus precatorius, Arthrocnemum macrostachyum, Acacia ehrenbergiana and Acacia tortilis) from Saudi Arabia. Usually several days were required to determine the viability of all five species via germination tests. However, X-ray test will give immediate results on filled/viable seeds. Seeds of all species, except Acacia ehrenbergiana and Acacia tortilis showed high viability in both germination (96–72% at 25/15 °C, 94–70% at 35/25 °C) and X-ray (100–80%) test. Furthermore, there was a general agreement between the germination (19%, 14% at 25/15 °C and 17% and 12% at 35/25 °C) and X-ray (8%, 4%) tests in which seed viability of Acacia ehrenbergiana and Acacia tortilis was very low due to insect damaged embryo as shown in X-ray analysis. Seeds of Abruspreca torius have physical dormancy, which was broken by scarification in concentrated sulfuric acid (10 min), and they exhibited high viability in both the germination (83% at 25/15 °C and 81% at 35/25 °C) and X-ray (96%) tests. Most of the nongerminated seeds of the five species except those of Acacia ehrenbergiana and Acacia tortilis, were alive as judged by the tetrazolium test (TZ). Thus, for the five species examined, the X-ray test was proved to be a good and rapid predictor of seed viability.  相似文献   
2.
Bioluminescence of euphausiids takes place when a fluorescent tetrapyrrole F and a highly unstable protein P react in the presence of oxygen. A previous study on the euphausiid Meganyctiphanes norvegica indicated that F acts as a catalyst and P is consumed in the luminescence reaction, differing from the luminescence system of dinoflagellates in which a tetrapyrrole luciferin, nearly identical to F, is enzymatically oxidized in the presence of dinoflagellate luciferase. In the present study, P was extracted from Euphausia pacifica as well as from M. norvegica, then purified separately by affinity chromatography on a column of biliverdin–Sepharose 4B, completing the whole process in less than 5h. The samples of P obtained from both species had a molecular weight of 600,000, a purity of about 80%, and a specific activity 50–100 times greater than that previously found. The activity of P rapidly decreased in solutions, even at 0°C, and the inactivation of P derived from M. norvegica was more than four times faster than that derived from E. pacifica. The kinetics of the luminescence reaction was investigated with F and P whose concentrations were systematically varied. The reaction was characteristically slow and involved two different reaction rates; the turnover number at 0°C was 30/h for the initial 20 min and 20/h after the initial 1 h. The total light emitted in a 50-h period indicated that the bioluminescence quantum yield of F was about 0.6 at 0°C, and P recycled many times in the luminescence reaction. Thus, the present results conclusively show that F is a luciferin and P is a luciferase of an unusually slow-working type, contrary to early report.  相似文献   
3.
Brown fibre cotton is an environmental‐friendly resource that plays a key role in the textile industry. However, the fibre quality and yield of natural brown cotton are poor, and fundamental research on brown cotton is relatively scarce. To understand the genetic basis of brown fibre cotton, we constructed linkage and association populations to systematically examine brown fibre accessions. We fine‐mapped the brown fibre region, Lc1, and dissected it into 2 loci, qBF‐A07‐1 and qBF‐A07‐2. The qBF‐A07‐1 locus mediates the initiation of brown fibre production, whereas the shade of the brown fibre is affected by the interaction between qBF‐A07‐1 and qBF‐A07‐2. Gh_A07G2341 and Gh_A07G0100 were identified as candidate genes for qBF‐A07‐1 and qBF‐A07‐2, respectively. Haploid analysis of the signals significantly associated with these two loci showed that most tetraploid modern brown cotton accessions exhibit the introgression signature of Gossypium barbadense. We identified 10 quantitative trait loci (QTLs) for fibre yield and 19 QTLs for fibre quality through a genome‐wide association study (GWAS) and found that qBF‐A07‐2 negatively affects fibre yield and quality through an epistatic interaction with qBF‐A07‐1. This study sheds light on the genetics of fibre colour and lint‐related traits in brown fibre cotton, which will guide the elite cultivars breeding of brown fibre cotton.  相似文献   
4.
以南粳44为供试材料,在粘土和砂土土壤中,设置麦秸秆不还田和全量还田(6000 kg·hm-2)及3种施氮量(0、225、300 kg·hm-2)试验,研究了麦秸秆全量还田的腐解率和有机碳释放量动态变化,及其对稻田0~45 cm土壤溶解有机碳(DOC)含量和水稻产量的影响.结果表明: 麦秸秆还田的前期(0~30 d)其腐解率和有机碳释放量最高,腐解率为35.0%(粘土)和31.7%(砂土),有机碳释放率为34.1%(粘土)和33.1%(砂土);30 d后两者均减小.施用氮肥可显著促进秸秆腐解和有机碳释放量,粘土中麦秸秆腐解率和有机碳释放量明显大于砂土.麦秸秆还田后土壤DOC含量逐渐增加,至25 d达最大值,粘土和砂土分别为60.18和56.62 mg·L-1,此后逐渐减小并趋于稳定.麦秸秆还田处理15 cm处土壤DOC含量显著高于未还田处理,但两者在30和45 cm处土壤DOC含量差异不显著,说明秸秆还田主要增加了稻田0~15 cm土层DOC含量.与不施氮处理相比,施氮处理土壤DOC含量降低,2种施氮处理间差异不显著.秸秆还田减少了水稻前期分蘖发生量,显著降低了有效穗数,增加了穗粒数、结实率和千粒重,显著提高了水稻产量.  相似文献   
5.
A. Kumar  S. Sharma  S. Mishra 《Plant biosystems》2016,150(5):1056-1064
This study was conducted to study the long-term impact of bioinoculants, Azotobacter chroococcum and arbuscular mycorrhizal fungi (AMF) on growth and biomass yield of Jatropha curcas grown in nursery and in field conditions. The experiment was set up in a randomized block design, and the following treatments was designed (T1 = control, T2 = Azotobacter, T3 = inoculation with AMF, and T4 = inoculation with Azotobacter + AMF). Data on various growth attributes (shoot height and shoot diameter) and biochemical parameters [leaf relative water content (LRWC), sugars, protein, and photosynthetic pigments] were recorded up to 6 months in the nursery and in the field (18 months). Results pertaining to morpho-physiological traits showed Azotobacter and AMF consortia increase shoot height, shoot diameter, LRWC, sugars, proteins, and photosynthetic pigments over control under nursery conditions. Besides enhancing the plant growth, these bioinoculants helped in better establishment of Jatropha plants under field conditions. A significant improvement in the shoot height, shoot diameter, fruit yield/plant, and seed yield (g)/plant was evident in 18-month-old Jatropha plants under field conditions when Azotobacter and AMF were co-inoculated. This work supports the application of bioinoculants for establishment of Jatropha curcas in semi-arid regions.  相似文献   
6.
湖北、河南、安徽三省大别山区地理新分布植物何家庆(安徽大学生物系合肥230039)关键词大别山区,种子植物,地理新分布THENEWGEOGRAPHICALDISTRIBUTIONOFSPERMATOPHYTEINDABIESHANTHEREGIONS...  相似文献   
7.
Martinez  L. A.  Buschmann  A. H. 《Hydrobiologia》1996,326(1):341-345
Tank cultivation of Gracilaria using fish effluents has permitted a production of 48 kg m–2 yr–1 and can reduce the dissolved nitrogen loads in the seawater. We report the yield, gel strength, gelling and melting point of agar from Gracilaria cultivated in tanks with seawater previously utilized in intensive, land-based salmon cultures and compared to a control using directly pumped seawater, over a study period of 22 months. The results show that the highest agar yield (20 to 22%) was obtained when Gracilaria was cultivated with pure seawater as compared to the fish effluents. The gel strength, gelling and melting point were higher in the agar obtained from algae cultured with fish effluents. During the spring, the gel strength, gelling and melting point increased in tanks with fish effluents and decreased in tanks with a supply of pure seawater.  相似文献   
8.
The gibberellin (GA)-biosynthesis mutations, lh i , ls and Ie 5839 have been used to investigate the role(s) of the GAs in seed development of the garden pea (Pisum sativum L.). Seeds homozygous for lh i possess reduced GA levels, are more likely to abort during development, and weigh less at harvest, compared with wild-type seeds due to expression of the lh i mutation in the embryo and/ or endosperm. Compared with wild-type seeds, the lh i mutation reduces endogenous GA1 and gibberellic acid (GA3) levels in the embryo/endosperm a few days after anthesis and fertilizing lh i plants with wild-type pollen dramatically increases GA1 and GA3 levels in the embryo/ endosperm and restores normal seed development. By contrast, the ls and le 5839 mutations do not appear to reduce GA levels in the embryo/endosperm of seeds a few days after anthesis, and do not affect embryo or endosperm development. However, both the ls and lh i mutations substantially reduce endogenous GA levels in embryos at contact point (the first day the liquid endosperm disappears). Levels of GAs in seeds from crosses involving the ls and lh i mutations suggest that GAs are synthesised in both the embryo/endosperm and testa and that the expression of ls depends on the tissue and developmental stage examined. These results suggest that GAs (possibly GA1 and/or GA3) play an important role early in pea seed development by regulating the development of the embryo and/or endosperm. By contrast, the high GA levels found in wild-type seeds at contact point (and beyond) do not appear to have a physiological role in seed development.Abbreviations GAn gibberellin An - DAA days after anthesis - WT wild-type We thank Noel Davies, Katherine McPherson and Peter Bobbi for technical assistance, Professor L. Mander (ANU, Canberra) for dideuterated GA standards, and the Australian Research Council and Frontier Research Program, The Institute of Physical and Chemical Research (RIKEN, Japan), for financial support.  相似文献   
9.
The effects of salinity on the reproduction of coastal submerged macrophyte species were studied on samples of communities from six seasonal marshes in two outdoor experiments performed in autumn and in spring. The submerged macrophyte communities were submitted to five different salinity levels (0, 1, 2, 4 and 6 g/1 Cl?1). In a companion paper (Grillas, van Wijck & Bonis 1993) three groups of species were distinguished on the basis of their biomass production over the salinity range 0 to 6 g/1 Cl?1: (1) glycophytes (non-salt-tolerant species), (2) salt-tolerant species and (3) halo-phytes. This part of the study describes the impact of salinity on the reproduction of the individual species during the two experiments. The species differ in their capacity to reproduce in the autumn; only Zannichelliapedunculata and Tolypella hispánica were able to produce fruits in that season. For all species reproduction was greater in spring and strongly correlated with biomass, except for Chara canescens. Differences in reproductive effort over the salinity range amplified the halophytic nature of Ruppia marítima and Chara canescens and the intolerance of Callitriche truncata and Chara contraria. For the other species, reproductive effort did not differ significantly over the salinity range. Regarding the effect of salinity on biomass and reproductive effort of individual species, there were large differences in the total weight of propagules produced at the community level and in the relative contribution of individual species. The resulting quantitative changes in the species composition of the seed bank could affect the structure of the communities by their effects on the establishment and survival of species populations.  相似文献   
10.
In many tropical regions, slash‐and‐burn agriculture is considered as a driver of deforestation; the forest is converted into agricultural land by cutting and burning the trees. However, the fields are abandoned after few years because of yield decrease and weed invasion. Consequently, new surfaces are regularly cleared from the primary forest. We propose a reclamation strategy for abandoned fields allowing and sustaining re‐cultivation. In the dry region of south‐western Madagascar, we tested, according to a split‐plot design, an alternative selective slash‐and‐burn cultivation technique coupled with compost amendment on 30–year‐old abandoned fields. Corn plants (Zea mays L.) were grown on four different types of soil amendments: no amendment (control), compost, ashes (as in traditional slash‐and‐burn cultivation), and compost + ashes additions. Furthermore, two tree cover treatments were applied: 0% tree cover (as in traditional slash‐and‐burn cultivation) and 50% tree cover (selective slash‐and‐burn). Both corn growth and soil fertility parameters were monitored during the growing season 2015 up to final harvest. The amendment compost + ashes strongly increased corn yield, which was multiplied by 4–5 in comparison with ashes or compost alone, reaching 1.5 t/ha compared to 0.25 and 0.35 t/ha for ashes and compost, respectively. On control plots, yield was negligible as expected on these degraded soils. Structural equation modeling evidenced that compost and ashes were complementary fertilizing pathways promoting soil fertility through positive effects on soil moisture, pH, organic matter, and microbial activity. Concerning the tree cover treatment, yield was reduced on shaded plots (50% tree cover) compared to sunny plots (0% tree cover) for all soil amendments, except ashes. To conclude, our results provide empirical evidence on the potential of recultivating tropical degraded soils with compost and ashes. This would help mitigating deforestation of the primary forest by increasing lifespan of agricultural lands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号