首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   1篇
  国内免费   1篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2016年   2篇
  2014年   6篇
  2013年   8篇
  2012年   5篇
  2011年   6篇
  2010年   2篇
  2009年   8篇
  2008年   9篇
  2007年   7篇
  2006年   4篇
  2005年   4篇
  2004年   4篇
  2003年   5篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   3篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   4篇
排序方式: 共有115条查询结果,搜索用时 453 毫秒
1.
ATP synthesis and consumption in respiring cells of the green alga Chlamydomonas reinhardtii were measured with 31P in vivo NMR saturation transfer experiments to determine the intracellular compartmentation of inorganic phosphate. Most of the observed flux towards ATP synthesis was catalyzed by the coupled enzymes glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase (GAPDH/PGK). The attribution of the measured flux to these enzymes is supported by the observation, that (i) the magnetization transfer was strongly reduced by iodoacetate, an irreversible inhibitor of GAPDH and that (ii) the unidirectional flux was much greater than the net flux through the mitochondrial F0F1-ATPase as determined by oxygen consumption measurements. In Chlamydomonas, glycolysis is divided into a chloroplastidic and a cytosolic part with the enzymes GAPDH/PGK being located in the chloroplast stroma (Klein 1986). The 31P-NMR signal of inorganic phosphate must, therefore, originate from the chloroplast. The life time of the magnetic label transferred to Pi by these enzymes is too short for it to be transported to the cytosol via the phosphate translocator of the chloroplast envelope. When the intracellular compartmentation of Pi was taken into consideration the calculated unidirectional ATP synthesis rate was equal to the consumption rate, indicating operation of GAPDH/PGK near equilibrium. The assignment of most of the intracellular Pi to the chloroplast is in contradiction to earlier reports, which attributed the Pi signal to the cytosol. This is of special interest for the use of the chemical shift of the Pi signal as an intracellular pH-marker in plant cells.Abbreviations 3-PGA 3-phosphoglycerate - CW continuous wave - dG6P 2-deoxyglucose-6-phosphate - GAPDH glyceraldehyde-3-phosphate dehydrogenase - MO equilibrium z-magnetization - M0 instantaneous z-magnetization after selective saturation for time t - MDP methylene-diphosphonic acid - PDE phosphodiester - PGK phosphoglycerate kinase - Pi inorganic orthophosphate - polyP polyphosphate - T1 longitudinal relaxation time - 1 longitudinal relaxation time with chemical exchange - TCA cycle tricarboxylic acid cycle Correspondence to: A. Mayer  相似文献   
2.
 The kinetics of methemoglobin reduction by cytochrome b 5 has been studied by stopped-flow and saturation transfer NMR. A forward rate constant k f = 2.44×104 M–1 s–1 and a reverse rate constant k b = 540 M–1s–1 have been observed at 10 mm, pH 6.20, 25  °C. The ratio k f/k b = k eq = 43.6 is in good agreement with the equilibrium constant calculated from the electrochemical potential between cyt b 5 and methemoglobin. A bimolecular collisional mechanism is proposed for the electron transfer from cyt b 5 to methemoglobin based on the kinetic data analysis. The dependence of the rate constants on ionic strengths supports such collisional mechanism. It is also found that the reaction rate strongly depends on the conformations of methemoglobin. Received: 20 February 1996 / Accepted: 4 June 1996  相似文献   
3.
(1) 31P nuclear magnetic resonance was used to measure the creatine kinase-catalysed fluxes in Langendorff-perfused rat hearts consuming oxygen at different rates and using either of two exogenous substrates (11 mM glucose or 5 mM acetate). (2) Fluxes in the direction of ATP synthesis were between 3.5–12-times the steady-state rates of ATP utilization (estimated from rates of O2-consumption), demonstrating that the reaction is sufficiently rapid to maintain the cytosolic reactants near their equilibrium concentrations. (3) Under all conditions studied, the cytosolic free [ADP] was primarily responsible for regulating the creatine kinase fluxes. The enzyme displayed a Km for cytosolic ADP of 35 μM and an apparent Vmax of 5.5 mM/s in the intact tissue. (4) Although the reaction is maintained in an overall steady-state, the measured ratio of the forward flux (ATP synthesis) to the reverse flux (phosphocreatine synthesis) was significantly greater than unity under some conditions. It is proposed that this discrepancy may be a consequence of participation of ATP in reactions other than the PCr /ag ATP or ATP /ag ADP + Pi interconversions specifically considered in the analysis. (5) The results support the view that creatine kinase functions primarily to maintain low cytosolic concentrations of ADP during transient periods in which energy utilization exceeds production.  相似文献   
4.
5.
Medium-chain fatty acids (C6–C10) have attracted much attention recently for their unique properties compared to their long-chain counterparts, including low melting points and relatively higher carbon conversion yield. Thioesterase enzymes, which can catalyze the hydrolysis of acyl-ACP (acyl carrier protein) to release free fatty acids (FAs), regulate both overall FA yields and acyl chain length distributions in bacterial and yeast fermentation cultures. These enzymes typically prefer longer chain substrates. Herein, seeking to increase bacterial production of MCFAs, we conducted structure-guided mutational screening of multiple residues in the substrate-binding pocket of the E. coli thioesterase enzyme ‘TesA. Confirming our hypothesis that enhancing substrate selectivity for medium-chain acyl substrates would promote overall MCFA production, we found that replacement of residues lining the bottom of the pocket with more hydrophobic residues strongly promoted the C8 substrate selectivity of ‘TesA. Specifically, two rounds of saturation mutagenesis led to the identification of the ‘TesARD−2 variant that exhibited a 133-fold increase in selectivity for the C8-ACP substrate as compared to C16-ACP substrate. Moreover, the recombinant expression of this variant in an E. coli strain with a blocked β-oxidation pathway led to a 1030% increase in the in vivo octanoic acid (C8) production titer. When this strain was fermented in a 5-L fed-batch bioreactor, it produced 2.7 g/L of free C8 (45%, molar fraction) and 7.9 g/L of total free FAs, which is the highest-to-date free C8 titer to date reported using the E. coli type II fatty acid synthetic pathway. Thus, reshaping the substrate binding pocket of a bacterial thioesterase enzyme by manipulating the hydrophobicity of multiple residues altered the substrate selectivity and therefore fatty acid product distributions in cells. Our study demonstrates the relevance of this strategy for increasing titers of industrially attractive MCFAs as fermentation products.  相似文献   
6.
Two single nucleotide polymorphisms (SNPs) in the Human Hemochromatosis (HFE) gene, C282Y and H63D, are the major variants associated to altered iron status and it is well known that these mutations are in linkage disequilibrium with certain Human Leukocyte Antigen (HLA)-A alleles. In addition, the C282Y SNP has been previously suggested to confer susceptibility to acute lymphoblastic leukemia (ALL). We have aimed to assess the diagnosis utility of these polymorphisms in a population of Spanish subjects with suspicion of hereditary iron overload and to evaluate the effect of their associations with HLA-A alleles on the susceptibility to ALL. Both the 63DD [OR = 4.31 (1.7–11.2)] and 282YY (p for trend = 0.02) genotypes were more frequently found among subjects with suspicion of iron overload than among controls. 282YY carriers displayed significantly higher transferrin saturation index (TSI) values (p < 0.001) as well as serum iron (p = 0.01) and ferritin (p = 0.01) levels. In addition, transferrin levels were lower in these subjects (p = 0.01). Likewise, patients who were carriers of the compound heterozygous diplotype (282CY/63HD) showed significantly higher TSI and serum iron and ferritin concentrations. The H63D SNP did not significantly affect the analytical parameters measured. All 282YY carriers and 69.2% of compound heterozygotes showed an altered biochemical index. The frequencies of the HFE SNPs in ALL pediatric patients were lower than those found in controls, whereas the HLA-A*24 allele was significantly overrepresented in the patients group [OR = 3.76 (1.9–7.3)]. No HFE-HLA-A associations were found to modulate the ALL risk. These results suggest that it may be useful to test for both HFE H63D and C282Y polymorphisms in patients with iron overload, as opposed to just genotyping for the C282Y SNP, which is customary in some healthcare centers. These HFE variants and their associations with HLA-A alleles were not observed to be relevant for the susceptibility to ALL in our population.  相似文献   
7.
The synonymous divergence between Escherichia coli and Salmonella typhimurium is explained in a model where there is a large variation between mutation rates at different nucleotide sites in the genome. The model is based on the experimental observation that spontaneous mutation rates can vary over several orders of magnitude at different sites in a gene. Such site-specific variation must be taken into account when studying synonymous divergence and will result in an apparent saturation below the level expected from an assumption of uniform rates. Recently, it has been suggested that codon preference in enterobacteria has a very large site-specific variation and that the synonymous divergence between different species, e.g., E. coli and Salmonella, is saturated. In the present communication it is shown that when site-specific variation in mutation rates is introduced, there is no need to invoke assumptions of saturation and a large variability in codon preference. The same rate variation will also bring average mutation rates as estimated from synonymous sequence divergence into numerical agreement with experimental values. Received: 10 July 1998 / Accepted: 20 August 1998  相似文献   
8.
The family II cellulose-binding modules (CBM) from Thermobifida fusca Cel5A and Cel48A were cloned in the Escherichia coli/Streptomyces shuttle vector pD730, and the plasmids were transformed into Streptomyces lividans TKM31. CBM(Cel5A), and CBM(Cel48A), CBM(Cel6B) were expressed and purified from S. lividans. The molecular masses were determined by mass spectrometry, and the values were 10595 +/- 2, 10915 +/- 2, and 11291 +/- 2 Da for CBM(Cel5A), CBM(Cel6B), and CBM(Cel48A), respectively. Three different binding models (Langmuir, Interstice Penetration, and Interstice Saturation) were tested to describe the binding isotherms of these CBMs on bacterial microcrystalline cellulose (BMCC). The experimental binding isotherms of T. fusca family II CBMs on BMCC are best modeled by the Interstice Saturation model, which includes binding to the constrained interstice surface of BMCC as well as traditional Langmuir binding on the freely accessible surface. The Interstice Saturation model consists of three different steps (Langmuir binding, interstice binding, and interstice saturation). Full reversibility only occurred in the Langmuir region. The irreversibility in the interstice binding and saturation regions probably was caused by interstice entrapment. Temperature shift experiments in different binding regions support the interstice entrapment assumption. There was no systematic difference in binding between the two types of exocellulase CBMs--one that hydrolyzes cellulose from the nonreducing (CBM(Cel6B)) end and one that hydrolyzes cellulose from the reducing end (CBM(Cel48A)).  相似文献   
9.
Marginal reef habitats are regarded as regions where coral reefs and coral communities reflect the effects of steady-state or long-term average environmental limitations. We used classifications based on this concept with predicted time-variant conditions of future climate to develop a scenario for the evolution of future marginality. Model results based on a conservative scenario of atmospheric CO2 increase were used to examine changes in sea surface temperature and aragonite saturation state over the Pacific Ocean basin until 2069. Results of the projections indicated that essentially all reef locations are likely to become marginal with respect to aragonite saturation state. Significant areas, including some with the highest biodiversity, are expected to experience high-temperature regimes that may be marginal, and additional areas will enter the borderline high temperature range that have experienced significant ENSO-related bleaching in the recent past. The positive effects of warming in areas that are presently marginal in terms of low temperature were limited. Conditions of the late 21st century do not lie outside the ranges in which present-day marginal reef systems occur. Adaptive and acclimative capabilities of organisms and communities will be critical in determining the future of coral reef ecosystems.Electronic supplementary material is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号