首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   11篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   6篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   8篇
  2012年   3篇
  2011年   10篇
  2010年   4篇
  2009年   3篇
  2008年   6篇
  2007年   3篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  2002年   5篇
  2001年   2篇
  1993年   2篇
  1973年   1篇
排序方式: 共有75条查询结果,搜索用时 187 毫秒
1.
2.
3.
4.
Gliomas are characterized by increased infiltration into the surrounding normal brain tissue. We recently reported that RTVP-1 is highly expressed in gliomas and plays a role in the migration of these cells, however the regulation of RTVP-1 expression in these cells is not yet described. In this study we examined the role of PKC in the regulation of RTVP-1 expression and found that PMA and overexpression of PKCα and PKCε increased the expression of RTVP-1, whereas PKCδ exerted an opposite effect. Using the MatInspector software, we identified a SRF binding site on the RTVP-1 promoter. Chromatin immunoprecipitation (ChIP) assay revealed that SRF binds to the RTVP-1 promoter in U87 cells, and that this binding was significantly increased in response to serum addition. Moreover, silencing of SRF blocked the induction of RTVP-1 expression in response to serum. We found that overexpression of PKCα and PKCε increased the activity of the RTVP-1 promoter and the binding of SRF to the promoter. In contrast, overexpression of PKCδ blocked the increase in RTVP-1 expression in response to serum and the inhibitory effect of PKCδ was abrogated in cells expressing a SRFT160A mutant. SRF regulated the migration of glioma cells and its effect was partially mediated by RTVP-1. We conclude that RTVP-1 is a PKC-regulated gene and that this regulation is at least partly mediated by SRF. Moreover, RTVP-1 plays a role in the effect of SRF on glioma cell migration.  相似文献   
5.
Shu Q  Wang L  Wu J  Du H  Liu Z  Ren H  Zhang J 《Gene》2012,493(1):113-123
Tree peony (Paeonia suffricotisa) cultivars have a unique character compared with wild species; the stamen petalody results in increased whorls of petals and generates different flower forms, which are one of the most important traits for cultivar classification. In order to investigate how petaloid stamens are formed, we obtained the coding sequence (666 bp) and genomic DNA sequence of the PsTM6 genes (belongs to B subfamily of MADS-box gene family) from 23 tree peony samples, Five introns and six exons consisted of the genomic DNA sequence. The analysis of cis-acting regulatory elements in the third and fourth intron indicated that they were highly conserved in all samples. Partial putative amino acids were analyzed and the results suggested that functional differentiation of PsTM6 paralogs apparently affected stamen petalody and flower shape formation due to due to amino acid substitution caused by differences in polarity and electronic charge. Sliding window analysis indicated that the different regions of PsTM6 were subjected to different selection forces, especially in the K domain. This is the first attempt to investigate genetic control of the stamen petalody based on the PsTM6 sequence. This will provide a basis for understanding the evolution of PsTM6 and its the function of in determining stamen morphology of tree peony.  相似文献   
6.
7.
8.
The biological activities of a sterile red fungus (SRF) capable of plant growth promotion and suppression of take-all disease were investigated in soils collected from Lancelin, Newdegate and Mt. Barker regions of Western Australia. Further, the effects of three wheat cultivars and the presence of two isolates ofStreptomyces on the biological activities of the SRF were tested using the Lancelin soil. The biological activities of the SRF were greatest in the Lancelin and Newdegate (wheat field) soils and with the wheat cultivar Gutha. In in vitro studies the soil streptomycetes tested showed either a significant increase in the exudate production by the SRF, which had antifungal and growth promoting properties, or an inhibition of growth of the fungus. Streptomycete A63 which stimulated the exudate production by the SRF in vitro, however, did not enhance disease protection in vivo. On the other hand, protection from root rot by the SRF in vivo was reduced in the presence of the streptomycete isolate Ax which is capable of inhibiting the growth of the SRF in vitro.  相似文献   
9.
10.
Biodrying is a variation of aerobic decomposition, used within mechanical–biological treatment (MBT) plants to dry and partially stabilise residual municipal waste. Biodrying MBT plants can produce a high quality solid recovered fuel (SRF), high in biomass content. Here, process objectives, operating principles, reactor designs, parameters for process monitoring and control, and their effect on biodried output quality are critically examined. Within the biodrying reactors, waste is dried by air convection, the necessary heat provided by exothermic decomposition of the readily decomposable waste fraction. Biodrying is distinct from composting in attempting to dry and preserve most of biomass content of the waste matrix, rather than fully stabilise it. Commercial process cycles are completed within 7–15 days, with mostly H2O(g) and CO2 loses of ca. 25–30% w/w, leading to moisture contents of <20% w/w. High airflow rate and dehumidifying of re-circulated process air provides for effective drying. We anticipate this review will be of value to MBT process operators, regulators and end-users of SRF.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号