首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1254篇
  免费   42篇
  国内免费   77篇
  2023年   6篇
  2022年   11篇
  2021年   16篇
  2020年   9篇
  2019年   26篇
  2018年   26篇
  2017年   19篇
  2016年   18篇
  2015年   33篇
  2014年   102篇
  2013年   133篇
  2012年   64篇
  2011年   129篇
  2010年   53篇
  2009年   81篇
  2008年   77篇
  2007年   57篇
  2006年   69篇
  2005年   46篇
  2004年   50篇
  2003年   41篇
  2002年   44篇
  2001年   30篇
  2000年   20篇
  1999年   18篇
  1998年   19篇
  1997年   24篇
  1996年   11篇
  1995年   18篇
  1994年   16篇
  1993年   10篇
  1992年   10篇
  1991年   6篇
  1990年   8篇
  1989年   3篇
  1988年   5篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1984年   18篇
  1983年   10篇
  1982年   6篇
  1981年   4篇
  1979年   7篇
  1978年   1篇
  1977年   4篇
  1976年   1篇
  1975年   3篇
  1974年   2篇
排序方式: 共有1373条查询结果,搜索用时 31 毫秒
1.
Acute lung injury (ALI) is a serious disease with unacceptably high mortality and morbidity rates. Up to now, no effective therapeutic strategy for ALI has been established. Rutin, quercetin-3-rhamnosyl glucoside, expresses a wide range of biological activities and pharmacological effects, such as anti-inflammatory, antihypertensive, anticarcinogenic, vasoprotective, and cardioprotective activities. Pretreatment with rutin inhibited not only histopathological changes in lung tissues but also infiltration of polymorphonuclear granulocytes into bronchoalveolar lavage fluid in lipopolysaccharide (LPS)-induced ALI. In addition, LPS-induced inflammatory responses, including increased secretion of proinflammatory cytokines and lipid peroxidation, were inhibited by rutin in a concentration-dependent manner. Furthermore, rutin suppressed phosphorylation of NF-κB and MAPK and degradation of IκB, an NF-κB inhibitor. Decreased activities of antioxidative enzymes such as superoxide dismutase, catalase, glutathione peroxidase, and heme oxygenase-1 caused by LPS were reversed by rutin. At the same time, we found that ALI amelioration by chelation of extracellular metal ions with rutin is more efficacious than with deferoxamine. These results indicate that the protective mechanism of rutin is through inhibition of MAPK–NF-κB activation and upregulation of antioxidative enzymes.  相似文献   
2.
Resistance to therapy-mediated apoptosis in inflammatory breast cancer, an aggressive and distinct subtype of breast cancer, was recently attributed to increased superoxide dismutase (SOD) expression, glutathione (GSH) content, and decreased accumulation of reactive species. In this study, we demonstrate the unique ability of two Mn(III) N-substituted pyridylporphyrin (MnP)-based SOD mimics (MnTE-2-PyP5+ and MnTnBuOE-2-PyP5+) to catalyze oxidation of ascorbate, leading to the production of excessive levels of peroxide, and in turn cell death. The accumulation of peroxide, as a consequence of MnP+ascorbate treatment, was fully reversed by the administration of exogenous catalase, showing that hydrogen peroxide is essential for cell death. Cell death as a consequence of the action of MnP+ascorbate corresponded to decreases in GSH levels, prosurvival signaling (p-NF-κB, p-ERK1/2), and in expression of X-linked inhibitor of apoptosis protein, the most potent caspase inhibitor. Although markers of classical apoptosis were observed, including PARP cleavage and annexin V staining, administration of a pan-caspase inhibitor, Q-VD-OPh, did not reverse the observed cytotoxicity. MnP+ascorbate-treated cells showed nuclear translocation of apoptosis-inducing factor, suggesting the possibility of a mechanism of caspase-independent cell death. Pharmacological ascorbate has already shown promise in recently completed phase I clinical trials, in which its oxidation and subsequent peroxide formation was catalyzed by endogenous metalloproteins. The catalysis of ascorbate oxidation by an optimized metal-based catalyst (such as MnP) carries a large therapeutic potential as an anticancer agent by itself or in combination with other modalities such as radio- and chemotherapy.  相似文献   
3.
4.
Imbalance in metal ion homeostasis is a hallmark in neurodegenerative conditions involving protein deposition, and amyotrophic lateral sclerosis (ALS) is no exception. In particular, Ca2+ dysregulation has been shown to correlate with superoxide dismutase-1 (SOD1) aggregation in a cellular model of ALS. Here we present evidence that SOD1 aggregation is enhanced and modulated by Ca2+. We show that at physiological pH, Ca2+ induces conformational changes that increase SOD1 β-sheet content, as probed by far UV CD and attenuated total reflectance-FTIR, and enhances SOD1 hydrophobicity, as probed by ANS fluorescence emission. Moreover, dynamic light scattering analysis showed that Ca2+ boosts the onset of SOD1 aggregation. In agreement, Ca2+ decreases SOD1 critical concentration and nucleation time during aggregation kinetics, as evidenced by thioflavin T fluorescence emission. Attenuated total reflectance FTIR analysis showed that Ca2+ induced aggregates consisting preferentially of antiparallel β-sheets, thus suggesting a modulation effect on the aggregation pathway. Transmission electron microscopy and analysis with conformational anti-fibril and anti-oligomer antibodies showed that oligomers and amyloidogenic aggregates constitute the prevalent morphology of Ca2+-induced aggregates, thus indicating that Ca2+ diverts SOD1 aggregation from fibrils toward amorphous aggregates. Interestingly, the same heterogeneity of conformations is found in ALS-derived protein inclusions. We thus hypothesize that transient variations and dysregulation of cellular Ca2+ levels contribute to the formation of SOD1 aggregates in ALS patients. In this scenario, Ca2+ may be considered as a pathogenic effector in the formation of ALS proteinaceous inclusions.  相似文献   
5.
Foxtail millet (Pennisetum glaucum L.) is a vital crop that is planted as food and fodder crop around the globe. There is only limited information is present for abiotic stresses on the physiological responses to atrazine. A field experiment was conducted to investigate the effects of different atrazine dosages on the growth, fluorescence and physiological parameters i.e., malonaldehyde (MDA) and reactive oxygen species (ROS) (H2O2 and O2) in the leaves to know the extent of atrazine on oxidative damage of foxtail millet. Our experiment consisted of 0, 2.5, 12.5, 22.5 and 32.5 (mg/kg) of labeled atrazine doses on 2 foxtaill millet varieties. High doses of atrazine significantly enhanced ROS and MDA synthesis in the plant leaves. Enzymes activities like ascorbate peroxidase (APX) and peroxidase (POD) activities enhanced, while catalase (CAD) and superoxide dismutase (SOD) activities reduced with increasing atrazine concentrations. Finally atrazine doses at 32.5 mg/kg reduced chlorophyll contents, while chlorophyll (a/b) ratio also enhanced. Biomass, plant height, chlorophyll fluorescence parameters, minimal and maximal fluorescence (Fo, Fm), maximum and actual quantum yield, photochemical quenching coefficient, and electron transport rate are decreased with increasing atrazine doses.  相似文献   
6.
The structural and spectroscopic properties of novel five-coordinated dimeric-Cu(II) system have been investigated. The biocidal activities of all eight compounds, ligands, cupric nitrate and standard drugs against six bacteria and three fungi were determined. The DNA interaction activity of complexes was studied using spectrophotometry and electrophoresis. The superoxide dismutase (SOD)-like activity of the complexes was compared with previously reported monomeric- and dimeric copper complexes. The results support the five-coordinated dimeric square pyramidal geometry for the quinolone-Cu(II) system.  相似文献   
7.
8.
The superoxide-dismutase-like activity of a series of divalent metal saccharinates of general stoichiometry [MII(Sac)2(H2O)4]·2H2O (with MII=Mn,Fe,Co,Ni,Cu,Zn) has been investigated using the nitroblue tetrazolium O 2 reduction assay. The results show that all these complexes possess the capability to dismutate the superoxide anion generated in the xanthine/xanthine oxidase system. Interestingly, the greatest activity is shown by the corresponding copper complex. The results are discussed and compared with those obtained for native superoxide dismutase, which was tested under the same experimental conditions. Dedicated to Prof. Pedro J. Aymonino on the occasion of his 65th birthday.  相似文献   
9.
Heat shock proteins (HSPs) are attractive therapeutic targets for neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), characterized by aberrant formation of protein aggregates. Although motor neurons have a high threshold for activation of HSP genes, HSP90 inhibitors are effective inducers. This study evaluated NXD30001, a novel, small molecule HSP90 inhibitor based on the radicicol backbone, for its ability to induce neuronal HSPs and for efficacy in an experimental model of ALS based on mutations in superoxide-dismutase 1 (SOD1). In motor neurons of dissociated murine spinal cord cultures, NXD30001-induced expression of HSP70/HSPA1 (iHSP70) and its co-chaperone HSP40/DNAJ through activation of HSF1 and exhibited a protective profile against SOD1G93A similar to geldanamycin, but with less toxicity. Treatment prevented protein aggregation, mitochondrial fragmentation, and motor neuron death, important features of mutant SOD1 toxicity, but did not effectively prevent aberrant intracellular Ca2+ accumulation. NXD30001 distributed to brain and spinal cord of wild-type and SOD1G93A transgenic mice following intraperitoneal injection; however, unlike in culture, in vivo levels of SOD1 were not reduced. NXD30001-induced expression of iHSP70 in skeletal and cardiac muscle and, to a lesser extent, in kidney, but not in liver, spinal cord, or brain, with either single or repeated administration. NXD30001 is a very useful experimental tool in culture, but these data point to the complex nature of HSP gene regulation in vivo and the necessity for early evaluation of the efficacy of novel HSP inducers in target tissues in vivo.  相似文献   
10.
The direct and indirect methods for assaying the superoxide dismutase activity of a compound are compared. With the use of a direct method. the mechanism of the catalysis of O2-dismutation by the tested compound can be determined. while with the indirect method it cannot. and this may lead to misinterpretation of the results. Assuming that the catalysis occurs via the ‘ping-pong’ mechanism, both the direct and indirect methods are limited to the determination of values of kcat ≥ 105M?1s?1 and kcat ≥ 3 × 106M?1s?1. respectively. Moreover, many side reactions may occur with the indirect method which may interfere with the measurements. Nevertheless. the indirect method approximates better the in vivo conditions than the direct method, and a tested compound that has high SOD activity using a direct method and low SOD activity using an indirect method. will most probably be a poor SOD mimic in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号