首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   4篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2005年   2篇
  2000年   1篇
  1998年   1篇
排序方式: 共有23条查询结果,搜索用时 73 毫秒
1.
Lippert U  Ferrari DM  Jahn R 《FEBS letters》2007,581(18):3479-3484
Mast cells are important players in innate immunity and mediate allergic responses. Upon stimulation, they release biologically active mediators including histamine, cytokines and lysosomal hydrolases. We used permeabilized rat basophilic leukaemia cells as model to identify R-SNAREs (soluble NSF (N-ethylmaleimide-sensitive fusion protein)) mediating exocytosis of hexosaminidase from mast cells. Of a complete set of recombinant mammalian R-SNAREs, only vesicle associated membrane protein (VAMP8)/endobrevin consistently blocked hexosaminidase release, which was also insensitive to treatment with clostridial neurotoxins. Thus, VAMP8, which also mediates fusion of late endosomes and lysosomes, plays a major role in hexosaminidase release, strengthening the view that mast cell granules share properties of both secretory granules and lysosomes.  相似文献   
2.
Cytotoxic lymphocytes (CLs) are responsible for the clearance of virally infected or neoplastic cells. CLs possess specialised lysosome-related organelles called granules which contain the granzyme family of serine proteases and perforin. Granzymes may induce apoptosis in the target cell when delivered by the pore forming protein, perforin. Here we follow the perforin-granzyme pathway from synthesis and storage in the granule, to exocytosis and finally delivery into the target cell. This review focuses on the controversial subject of perforin-mediated translocation of granzymes into the target cell cytoplasm. It remains unclear whether this occurs at the cell surface with granzymes moving through a perforin pore in the plasma membrane, or if it involves internalisation of perforin and granzymes and subsequent release from an endocytic compartment. The latter mechanism would represent an example of cross talk between the endo-lysosomal pathways of individual cells. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.  相似文献   
3.

Background

To understand the mechanisms related to the ‘dynamical ordering’ of macromolecules and biological systems, it is crucial to monitor, in detail, molecular interactions and their dynamics across multiple timescales. Solution nuclear magnetic resonance (NMR) spectroscopy is an ideal tool that can investigate biophysical events at the atomic level, in near-physiological buffer solutions, or even inside cells.

Scope of review

In the past several decades, progress in solution NMR has significantly contributed to the elucidation of three-dimensional structures, the understanding of conformational motions, and the underlying thermodynamic and kinetic properties of biomacromolecules. This review discusses recent methodological development of NMR, their applications and some of the remaining challenges.

Major conclusions

Although a major drawback of NMR is its difficulty in studying the dynamical ordering of larger biomolecular systems, current technologies have achieved considerable success in the structural analysis of substantially large proteins and biomolecular complexes over 1 MDa and have characterised a wide range of timescales across which biomolecular motion exists. While NMR is well suited to obtain local structure information in detail, it contributes valuable and unique information within hybrid approaches that combine complementary methodologies, including solution scattering and microscopic techniques.

General significance

For living systems, the dynamic assembly and disassembly of macromolecular complexes is of utmost importance for cellular homeostasis and, if dysregulated, implied in human disease. It is thus instructive for the advancement of the study of the dynamical ordering to discuss the potential possibilities of solution NMR spectroscopy and its applications. This article is part of a Special Issue entitled “Biophysical Exploration of Dynamical Ordering of Biomolecular Systems” edited by Dr. Koichi Kato.  相似文献   
4.
Bacillus thuringiensis (Bt) bacteria produce Cry toxins that are able to kill insect pests. Different models explaining the mode of action of these toxins have been proposed. The pore formation model proposes that the toxin creates pores in the membrane of the larval midgut cells after interaction with different receptors such as cadherin, aminopeptidase N and alkaline phosphatase and that this pore formation activity is responsible for the toxicity of these proteins. The alternative model proposes that interaction with cadherin receptor triggers an intracellular cascade response involving protein G, adenylate cyclase (AC) and protein kinase A (PKA). In addition, it was shown that Cry toxins induce a defense response in the larvae involving the activation of mitogen-activated kinases such as MAPK p38 in different insect orders. Here we analyzed the mechanism of action of Cry1Ab and Cry1Ac toxins and a collection of mutants from these toxins in the insect cell line CF1 from Choristoneura fumiferana, that is naturally sensitive to these toxins. Our results show that both toxins induced permeability of K+ ions into the cells. The initial response after intoxication with Cry1Ab and Cry1Ac toxins involves the activation of a defense response that involves the phosphorylation of MAPK p38. Analysis of activation of PKA and AC activities indicated that the signal transduction involving PKA, AC and cAMP was not activated during Cry1Ab or Cry1Ac intoxication. In contrast we show that Cry1Ab and Cry1Ac activate apoptosis. These data indicate that Cry toxins can induce an apoptotic death response not related with AC/PKA activation. Since Cry1Ab and Cry1Ac toxins affected K+ ion permeability into the cells, and that mutant toxins affected in pore formation are not toxic to CF1, we propose that pore formation activity of the toxins is responsible of triggering cell death response in CF1cells.  相似文献   
5.
Staphylococcus aureus α-toxin is the archetype of bacterial pore forming toxins and a key virulence factor secreted by the majority of clinical isolates of S. aureus. Toxin monomers bind to target cells and oligomerize to form small β-barrel pores in the plasma membrane. Many nucleated cells are able to repair a limited number of lesions by unknown, calcium-independent mechanisms. Here we show that cells can internalize α-toxin, that uptake is essential for cellular survival, and that pore-complexes are not proteolytically degraded, but returned to the extracellular milieu in the context of exosome-like structures, which we term toxosomes.  相似文献   
6.
Weibel-Palade bodies (WPBs) are secretory organelles of endothelial cells that store the thrombogenic glycoprotein von Willebrand factor (vWF). Endothelial activation, e.g. by histamine and thrombin, triggers the Ca2+-dependent exocytosis of WPB that releases vWF into the vasculature and thereby initiates platelet capture and thrombus formation. Towards understanding the molecular mechanisms underlying this regulated WPB exocytosis, we here identify components of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) machinery associated with WPB. We show that vesicle-associated membrane protein (VAMP) 3 and VAMP8 are present on WPB and that VAMP3, but not VAMP8 forms a stable complex with syntaxin 4 and SNAP23, two plasma membrane-associated SNAREs in endothelial cells. By introducing mutant SNARE proteins into permeabilized endothelial cells we also show that soluble VAMP3 but not VAMP8 mutants comprising the cytoplasmic domain interfere with efficient vWF secretion. This indicates that endothelial cells specifically select VAMP 3 over VAMP8 to cooperate with syntaxin 4 and SNAP23 in the Ca2+-triggered fusion of WPB with the plasma membrane. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   
7.
Cholesterol-dependent cytolysins (CDCs) are a large family of bacterial toxins that exhibit a dependence on the presence of membrane cholesterol in forming large pores in cell membranes. Significant changes in the three-dimensional structure of these toxins are necessary to convert the soluble monomeric protein into a membrane pore. We have determined the crystal structure of the archetypical member of the CDC family, streptolysin O (SLO), a virulence factor from Streptococcus pyogenes. The overall fold is similar to previously reported CDC structures, although the C-terminal domain is in a different orientation with respect to the rest of the molecule. Surprisingly, a signature stretch of CDC sequence called the undecapeptide motif, a key region involved in membrane recognition, adopts a very different structure in SLO to that of the well-characterized CDC perfringolysin O (PFO), although the sequences in this region are identical. An analysis reveals that, in PFO, there are complementary interactions between the motif and the rest of domain 4 that are lost in SLO. Molecular dynamics simulations suggest that the loss of a salt bridge in SLO and a cation–pi interaction are determining factors in the extended conformation of the motif, which in turn appears to result in a greater flexibility of the neighboring L1 loop that houses a cholesterol-sensing motif. These differences may explain the differing abilities of SLO and PFO to efficiently penetrate target cell membranes in the first step of toxin insertion into the membrane.  相似文献   
8.
Alcohol modulates the highly conserved, voltage‐ and calcium‐activated potassium (BK) channel, which contributes to alcohol‐mediated behaviors in species from worms to humans. Previous studies have shown that the calcium‐sensitive domains, RCK1 and the Ca2+ bowl, are required for ethanol activation of the mammalian BK channel in vitro. In the nematode Caenorhabditis elegans, ethanol activates the BK channel in vivo, and deletion of the worm BK channel, SLO‐1, confers strong resistance to intoxication. To determine if the conserved RCK1 and calcium bowl domains were also critical for intoxication and basal BK channel‐dependent behaviors in C. elegans, we generated transgenic worms that express mutated SLO‐1 channels predicted to have the RCK1, Ca2+ bowl or both domains rendered insensitive to calcium. As expected, mutating these domains inhibited basal function of SLO‐1 in vivo as neck and body curvature of these mutants mimicked that of the BK null mutant. Unexpectedly, however, mutating these domains singly or together in SLO‐1 had no effect on intoxication in C. elegans. Consistent with these behavioral results, we found that ethanol activated the SLO‐1 channel in vitro with or without these domains. By contrast, in agreement with previous in vitro findings, C. elegans harboring a human BK channel with mutated calcium‐sensing domains displayed resistance to intoxication. Thus, for the worm SLO‐1 channel, the putative calcium‐sensitive domains are critical for basal in vivo function but unnecessary for in vivo ethanol action.  相似文献   
9.
Macrophages are important tissue resident cells that regulate the dynamics of inflammation. However, they are strikingly heterogeneous. During studies looking at podoplanin (gp38) expression on stromal cells in the murine spleen and peritoneal cavity we unexpectedly discovered that podoplanin was expressed on a subset of F4/80+ macrophages; a subset which we have termed fibroblastic macrophages (FM). These cells function as phagocytes in vitro as measured by bead mediated phagocytosis assays. FM also exist at high frequency in the peritoneal cavity and in zymosan induced peritonitis in vivo. These FM represent a unique subgroup of F4/80+ macrophages and their presence in the inflamed peritoneum suggests that they play a role in zymosan induced peritonitis.  相似文献   
10.
Understanding the mechanism of action of pore-forming toxins (PFTs) produced by different bacteria, as well as the host responses to toxin action, would provide ways to deal with these pathogenic bacteria. PFTs affect the permeability of target cells by forming pores in their plasma membrane. Target organisms may overcome these effects by triggering intracellular responses that have evolved as defense mechanisms to PFT. Among them it is well documented that stress-activated protein kinases, and specially MAPK p38 pathway, play a crucial role triggering defense responses to several PFTs in different eukaryotic cells. In this review we describe different intracellular effects induced by PFTs in eukaryotic cells and highlight diverse responses activated by p38 pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号