首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
  2016年   1篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1994年   1篇
  1992年   1篇
  1979年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
2.
动物行为和生理活动的适应性调节是应对食物资源变化的主要策略。为探讨禁食和重喂食对大绒鼠体重、产热和血清瘦素的影响,测定了禁食和重喂食条件下大绒鼠的体重、体脂重量、静止代谢率、身体组成、血清瘦素含量以及禁食后重喂食期间的摄食量。结果显示:禁食导致大绒鼠体重、体脂重量和静止代谢率显著下降,重喂食后体重和静止代谢率能够恢复到对照组水平,而体脂重量却不能恢复。禁食12 h 后血清瘦素含量快速下降,重喂食后未能恢复到对照水平。此外,大绒鼠在禁食后重喂食期间摄食量没有补偿性增加,血清瘦素含量与体脂重量呈正相关关系。这些结果很可能反映出大绒鼠能调节自身生理状况以适应短期的能量缺乏,主要通过降低体重、血清瘦素含量和代谢活性器官重量以减少能量消耗。禁食后重喂食时大绒鼠没有摄食过量。血清瘦素的下降早于体重和体脂的下降。  相似文献   
3.
We evaluated the effects of starvation and refeeding on digestive enzyme activities in juvenile roach, Rutilus rutilus caspicus. Fish were divided into four feeding groups (mean mass 1.68 ± 0.12 g). The control group was fed to satiation twice a day throughout the experiment with formulated diet (SFK). The other three groups were deprived of feed for 1(S1), 2(S2), and 3(S3) weeks, respectively, and then fed to satiation during the refeeding period. The results showed that trypsin specific activity was not affected significantly either by starvation or refeeding, in all experimental groups. Chymotrypsin specific activity did not change significantly in S1 fish during the experimental period. In S2 and S3 fish no significant changes were observed during the starvation period. Upon refeeding, the activity increased in S2 fish, while it decreased in S3 fish. Amylase specific activity decreased significantly during the starvation period in all experimental groups. Upon refeeding, the activity increased. Alkaline phosphatase specific activity did not change significantly during the experiment period in S3 fish, while it showed significant changes during the starvation and refeeding period in the S1 and S2 fish. Starvation also had a significant effect on the structure of the intestine.  相似文献   
4.
To elucidate the physiological role of CREBH, the hepatic mRNA and protein levels of CREBH were estimated in various feeding states of wild and obesity mice. In the fast state, the expression of CREBH mRNA and nuclear protein were high and profoundly suppressed by refeeding in the wild-type mice. In ob/ob mice, the refeeding suppression was impaired. The diet studies suggested that CREBH expression was activated by fatty acids. CREBH mRNA levels in the mouse primary hepatocytes were elevated by addition of the palmitate, oleate and eicosapenonate. It was also induced by PPARα agonist and repressed by PPARα antagonist. Luciferase reporter gene assays indicated that the CREBH promoter activity was induced by fatty acids and co-expression of PPARα. Deletion studies identified the PPRE for PPARα activation. Electrophoretic mobility shift assay and chromatin immunoprecipitation (ChIP) assay confirmed that PPARα directly binds to the PPRE. Activation of CREBH at fasting through fatty acids and PPARα suggest that CREBH is involved in nutritional regulation.  相似文献   
5.
Fibroblast growth factor 21 (FGF21) is a key metabolic regulator that is induced by fasting and starvation, and its expression is thought to be regulated by the circadian clock in the liver. To evaluate the functional role of FGF21 in the circadian regulation of physiology and behavior, we examined the temporal expression profiles of Fgf21 and circadian clock genes in addition to behavioral activity rhythms under adlibitum feeding (ALF) and time-imposed restricted feeding (RF) in mice. Four hours of daily restricted feeding during the daytime induced over an 80-fold increase in feeding-dependent rhythmic Fgf21 mRNA expression in epididymal white adipose tissue (eWAT), although the expression levels were continuously increased 10-fold in the liver of wild-type (WT) mice. Refeeding subsequent to transient fasting revealed that refeeding but not fasting remarkably induces Fgf21 expression in eWAT, although fasting-induced hepatic Fgf21 expression is completely reversed by refeeding. The free-running period of locomotor activity rhythm under ALF and the food anticipatory activity (FAA) under RF remained intact in Fgf21 knockout (KO) mice, suggesting that FGF21 is dispensable for both the central clock in the suprachiasmatic nucleus (SCN) and the food-entrainable oscillator that governs the FAA. Temporal expression profiles of circadian genes such as mPer2 and BMAL1 were essentially identical in both tissues between WT and Fgf21 KO mice under RF. The physiological role of the refeeding-induced adipose Fgf21 expression remains to be elucidated.  相似文献   
6.
To investigate the importance of body fuel depletion on gut rehabilitation after food deprivation, we compared the kinetics of jejunal mucosa alteration and restoration in rats that were refed after reaching different stages in body fuel depletion. Rats (P2) were refed while still in the so-called phase II, where body protein utilization is minimized, whereas rats (P3) were refed when they had reached the stage of increasing protein utilization (phase III). There was a significant decrease in total mass of intestine (P2, -30%; P3, -40%) and jejunal mucosa (P2, -52%; P3, -60%), as well in the size of the crypts (P2, -15%; P3, -36%) and villi (P2, -37%; P3, -55%). Structural changes of the mucosa included disappearance of some villi and a reduction in the size and number of crypts. Despite the larger morphological alterations in P3, the restoration of mucosa was as fast and complete after only 3 days of refeeding for both P2 and P3 rats. The respective roles of the mitosis pressure and of the lamina propria dynamics were studied. The rapid reversibility of the gut mucosal alterations due to fasting might constitute an integrative process.  相似文献   
7.
The digestive enzyme activities were determined in Adriatic sturgeon and rainbow trout during starvation and refeeding period. Overall, the digestive enzyme activities are affected in the same sense in both species. The protease and lipase activities were decreased later than amylase activity. Even after 1 month of starvation, both species would be prepared to digest protein and lipids in an effective way. After 72 days of starvation, the digestive machinery of the sturgeon and of the trout shows an altered capacity to digest macronutrients. The capacity to digest proteins and lipids, after 60 days of refeeding, begins to become re-established in sturgeon and trout. In contrast, in this period, the capacity to digest carbohydrates remains depressed in both species.  相似文献   
8.
We report here the ontogenic changes in mRNA expression of chicken ghrelin (cGhrelin) and its receptor (cGHS-R1a) and the effects of fasting and refeeding on cGhrelin and cGHS-R1a mRNAs expression in 30-day-old broiler chickens. The level of cGhrelin mRNA in the proventriculus was low from embryo--day 15 (E15) to E19, but dramatically increased at post-hatching-day 2 (P2), then remained constant until P30 and followed by a significant decrease at P44 when there was a diet transition at P31 and thereafter. The decreased level was reversed at P58. Hypothalamic cGhrelin mRNA and proventriculus and hepatic cGHS-R1a mRNA were significantly increased at P30. The cGhrelin mRNA level in the proventriculus significantly increased in response to either 12-h or 36-h fasting but did not decrease after subsequent 12-h refeeding. The level of cGHS-R1a mRNA in the proventriculus was significantly upregulated in response to a 12-h fast but not to a 36-h fast and returned to the control level upon 12-h refeeding. Interestingly, it was apparent that the mRNA levels of both cGhrelin and cGHS-R1a in the liver were upregulated in response to fasting in a time-dependent manner and returned to the control level with subsequent refeeding. These results suggest that the expression pattern of ghrelin and its receptor mRNAs distinctly change in tissues depending on ontogenic stages and feeding states in poultry.  相似文献   
9.
Summary Rates of protein synthesis and oxygen consumption ( O2) in cod were compared in both fasted and refed animals. During a 14-day fast both protein synthesis and respiration rates fell to stable values after 6 days. When a meal of whole sandeel at 6% body weight was fed to fish fasted for 6 days, protein synthesis and ( O2) increased to a maximum at between 12 and 18 h after feeding. Peak ( O2) was about twice the pre-feeding values, while whole animal protein synthesis increased four-fold. There were differences between tissues in the timing of maximum protein synthesis; the liver and stomach responded faster than the remainder of the body. Maximum protein synthesis rates in the liver and stomach occurred at 6 h after feeding, at which time their calculated contribution to total ( O2) was 11%. Similar calculations suggested that the integrated increment in whole animal protein synthesis contributed between 23% and 44% of the post-prandial increase in ( O2). It was concluded that protein synthesis is an important contributor to increased ( O2) after feeding in cod.Abbreviations A s absolute rate of protein synthesis - ASDA apparent specific dynamic action - ATP adenosine triphosphate - k s fractional rate of protein synthesis - k s/RNA amount of protein synthesized per unit RNA - ( O2) oxygen consumption - PCA perchloric acid - RNA ribonucleic acid  相似文献   
10.
Effect of realimentation was studied on the structure and function of liver tissue of carp,Cyprinus carpio. Yearling carp, after a 3-month starvation period, were renourished at a feeding rate of 1% body weight per day. Samples were taken at refeeding days 0, 1, 2, 5, 22 and 78. Analyses were made of blood metabolites, liver RNA, DNA, lipids, glycogen and protein and of liver enzyme activities. Additionally, liver cytology was examined by means of qualitative and quantitative electron microscopy. The early refeeding period (up to day 5) was characterized by a fast recovery of plasma metabolite concentrations (protein, total lipids, free fatty acids, glucose), a drastic augmentation of hepatic glycogen reserves, and a pronounced increase of total liver weight and liver-somatic index. Constant values of total hepatic DNA showed that liver weight augmentation was not due to cell proliferation, but to a pronounced enlargement of the existing hepatocytes. Major hunger-related structural modifications of carp hepatocytes such as enlarged mitochondria or prominence of the lysosomal compartment were reversed. A significant volume increase of cell nuclei, together with a particularly strong elevation of hepatic RNA concentrations during initial realimentation suggest an immediate stimulation of protein synthesis. Since the cisternae of the endoplasmic reticulum were not reconstituted during that early phase, protein synthesis may have been executed mainly by free ribosomes. With prolonged realimentation, the volume of the endoplasmic reticulum as well as total and relative contents of liver soluble protein continuously increased, whereas RNA concentrations decreased again. An enforcement of liver oxidative capacity was indicated by the augmentation of cellular number and volume of mitochondria. The activities of the enzymes glucose-6-phosphate dehydrogenase and malic enzyme, which convert excess energy into NADPH, increased steadily. Concomitantly, hepatic lipid accumulation was enhanced. In conclusion, liver metabolism during the early recovery phase seems to be dominated both by repair processes and by intensive protein and glycogen synthesis. The liver slows down these processes during prolonged refeeding and directs an increasing percentage of energy and metabolites toward the generation of reducing equivalents and lipid reserves.Abbreviations BW body weight - ER endoplasmic reticulum - FFA free fatty acids - G6PDH glucose-6-phosphate dehydrogenase - LSI liver somtic index - LW liver weight - ME malic enzyme Presented in part as poster abstract at the International Congress on Research in Aquaculture: Fundamental and Applied Aspects. Antibes, France, 6–10 October, 1991  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号