首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   4篇
  2024年   1篇
  2022年   1篇
  2021年   3篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2014年   8篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1988年   1篇
  1986年   2篇
  1984年   1篇
  1980年   1篇
排序方式: 共有56条查询结果,搜索用时 15 毫秒
1.
The chromosomal localization of the gene which complements radiation hypersensitivity of AT cells was studied by microcell-mediated chromosome transfer. A 6-thioguanine-resistant derivative of an immortalized AT cell line, AT2KYSVTG, was used as a recipient for microcell-mediated chromosome transfer from 4 strains of mouse A9 cells, 3 of which carried a human X/11 recombinant chromosome containing various regions of chromosome 11, while the other carried an intact X chromosome. HAT-resistant microcell hybrids were isolated and examined for their radiosensitivity and chromosome constitution. The microcell hybrid clones obtained from the transfer of an intact X chromosome or an X/11 chromosome bearing the pter → q13 region of chromosome 11 did not show a difference in radiosensitivity from parental AT cells, while those obtained from the transfer of X/11 chromosomes bearing either the p11 → qter or the pter → q23 region of chromosome 11 exhibited a marked radioresistance which was comparable to normal human fibroblasts. A HAT-resistant but radiosensitive variant was further obtained from the microcell fusion with an A9 cell strain carrying an X/11 chromosome bearing the 11p11 → qter region, in which a deletion at the 11q23 region was found. The results indicate that the gene which complements a radiosensitive phenotype of AT is located at the q23 region of chromosome 11.  相似文献   
2.
The radiosensitivity of spermatogonial stem cells of C3H/HeH × 101/H F1 hybrid mice was determined by counting undifferentiated spermatogonia at 10 days after X-irradiation. During the spermatogenic cycle, differences in radiosensitivity were found, which were correlated with the proliferative activity of the spermatogonial stem cells. In stage VIIIirr, during quiescence, the spermatogonial stem cells were most radiosensitive with a D0 of 1.4 Gy. In stages XIirr−Virr, when the cells were proliferatively active, the D0 was about 2.6 Gy. Based on the D0 values for sensitive and resistant spermatogonia and on the D0 for the total population, a ratio of 45:55% of sensitive to resistant spermatogonial stem cells was estimated for cell killing.

When the present data were compared with data on translocation induction obtained in mice of the same genotype, a close fit was obtained when the translocation yield (Y; in % abnormal cells) after a radiation dose D was described by Y = eτD, with τ = 1 for the sensitive and τ = 0.1 for the resistant spermatogonial stem cells, with a maximal eτD of 100.  相似文献   

3.
Summary In order to examine changes in survival and mutation rates during a cell cycle in higher plant, fertilized egg cells of rice were irradiated with X-rays at 2 h intervals for the first 36 h after pollination, i.e., at different phases of the first and second cell cycles. The most sensitive phase in lethality was late G1 to early S, followed by late G2 to M, which were more sensitive than the other phases. In both M1 and M2 generations, sterile plants appeared most frequently when fertilized egg cells were irradiated at G2 and M phases. Different kinds of mutated characters gave rise to the respective maximum mutation rates at different phases of a cell cycle: namely, albino and viridis were efficiently induced at early G1, xantha at early S, short-culm mutant at mid G2, heading-date mutant at M to early G1. The present study suggests the possibility that the differential mutation spectrums concerning agronomic traits are obtained by selecting the time of irradiation after pollination.  相似文献   
4.
Lengths of long bones of skeletons were examined in 25 women first exposed to large skeletal doses of radiation (alpha particles from radium) at the age of 13–19 years. Meanlengths did not differ significantly between two subgroups based on age at first exposure toradiation (i.e., 13–16 vs. 17–19 years). Autoradiographs of femora of some women who ingested radium at 13–15 years of age showed evidence for bone growth when blood levels of radium were low (i.e., after ingestion of radium). These findings indicate no detectable effect of large skeletal doses of radiation on growth in adolescent and post-adolescent periods.  相似文献   
5.
Curcumin (diferuloylmethane) is a major component of food flavoring turmeric (Curcuma longa), and has been reported to be anticarcinogenic and anti-inflammatory. Although curcumin was shown to have antioxidant properties, its exact antioxidant nature has not been fully investigated. In this report we have investigated the possible antioxidant properties of curcumin using EPR spectroscopic techniques. Curcumin was found to inhibit the (1)O(2)-dependent 2,2,6,6-tetramethylpiperidine N-oxyl (TEMPO) formation in a dose-dependent manner. (1)O(2) was produced in a photosensitizing system using rose bengal as sensitizer, and was detected as TEMP-(1)O(2) adducts by electron paramagnetic resonance (EPR) spectroscopic techniques using TEMP as a spin-trap. Curcumin at 2.75 microM caused 50% inhibition of TEMP-(1)O(2) adduct formation. However, curcumin only marginally inhibited (24% maximum at 80 microM) reduction of ferricytochrome c in a xanthine-xanthine oxidase system demonstrating that it is not an effective superoxide radical scavenger. Additionally, there was minor inhibition of DMPO-OH adduct formation by curcumin (solubilized in ethanol) when an ethanol control was included in the EPR spin-trapping study, suggesting that curcumin may not be an effective hydroxyl radical scavenger. Together these data demonstrate that curcumin is able only to effectively quench singlet oxygen at very low concentration in aqueous systems.  相似文献   
6.
Fanconi anemia (FA) is an autosomal recessive disease characterized by bone-marrow failure, congenital abnormalities, and cancer susceptibility. There are 11 FA complementation groups in human where 8 genes have been identified. We found that FancD2 is conserved in evolution and present in the genome of the nematode Caenorhabditis elegans. The gene Y41E3.9 (CeFancD2) encodes a structural ortholog of human FANCD2 and is composed of 10 predicted exons. Our analysis showed that exons 6 and 7 were absent from a CeFancD2 EST suggesting the presence of a splice variant. In an attempt to characterize its role in DNA damage, we depleted worms of CeFANCD2 using RNAi. When the CeFANCD2(RNAi) worms were treated with a crosslinking agent, a significant drop in the progeny survival was noted. These worms were also sensitive, although to a lesser extent, to ionizing radiation (IR). Therefore, these data support an important role for CeFANCD2 in DNA damage response as for its human counterpart. The data also support the usefulness of C. elegans to study the Fanconi anemia pathway, and emphasize the biological importance of FANCD2 in DNA damage response throughout evolution.  相似文献   
7.
Photons are widely used in radiotherapy and while they are low LET radiation, can still pose a risk in developing second malignant neoplasms (SMN). Due to the physics of photons that allow distribution of energy outside the target volume, out-of-field irradiation is an important component of SMN risk assessment. The epidemiological evidence supporting this risk should be augmented with radiobiological justifications for a better understanding of the underlying processes.There are several factors that impact second cancer risk which can be analysed from a radiobiological perspective: age at irradiation, type of irradiated tissue, irradiated volume, treatment technique, previous irradiation/radiological investigations. Age-dependence has a radiobiological foundation given by the higher radiosensitivity of children as compared to adult patients. However, in its 2013 report, UNSCEAR advises against generalisation of the effects of childhood radiation exposure, given the fact that these effects are strongly organ dependent. Furthermore, the age-dependent radiation sensitivity has a bimodal distribution, since aging cells present an increase in the oxidative stress, which can promote premalignant cells.Non-targeted effects such as radiation-induced genomic instability, bystander or abscopal effects could also impact on the risk of SMN. Recent studies show that beside the known cellular changes, bystander effects can be manifested through increased cell proliferation, which could be a culprit for SMN development. Furthermore, new evidence on the existence of tumour-specific cancer stem cells that are long-lived and more quiescent and radioresistant than non-stem cancer cells can raise questions about their association with SMN risk.  相似文献   
8.
Esophageal squamous cell carcinoma (ESCC) has a low 5-year patient survival rate. Radiotherapy, as a preoperative or postoperative treatment of surgery, has a crucial role in improving local control and survival of ESCC. Various chemotherapeutic and biologic agents have been used as radio-sensitizers in combination with radiotherapy. Here, we demonstrate that zoledronic acid (ZOL) has a radio-sensitizing effect on ESCC cells. Exposure of ESCC cancer cells to ZOL plus radiation resulted in increased cell death through arresting the cell cycle between S and G2/M phases. ZOL appeared to inhibit proliferation, tube formation and invasion of endothelial cells. These anti-angiogenetic effects were more marked concurrently with irradiation. In addition, synergistic suppressive effects on VEGF expression were observed after combined treatment. Our data suggest that the combination of ZOL and radiation is a promising therapeutic strategy to enhance radiation therapy for ESCC patients.  相似文献   
9.

Background

Presence of unperfused regions containing cells under hypoxia and nutrient starvation contributes to radioresistance in solid human tumors. It is well known that hypoxia causes cellular radioresistance, but little is known about the effects of nutrient starvation on radiosensitivity. We have reported that nutrient starvation induced decrease of mTORC1 activity and decrease of radiosensitivity in an SV40-transformed human fibroblast cell line, LM217, and that nutrient starvation induced increase of mTORC1 activity and increase of radiosensitivity in human liver cancer cell lines, HepG2 and HuH6 (Murata et al., BBRC 2015). Knockdown of mTOR using small interfering RNA (siRNA) for mTOR suppressed radiosensitivity under nutrient starvation alone in HepG2 cells, which suggests that mTORC1 pathway regulates radiosensitivity under nutrient starvation alone. In the present study, effects of hypoxia and nutrient starvation on radiosensitivity were investigated using the same cell lines.

Methods

LM217 and HepG2 cells were used to examine the effects of hypoxia and nutrient starvation on cellular radiosensitivity, mTORC1 pathway including AMPK, ATM, and HIF-1α, which are known as regulators of mTORC1 activity, and glycogen storage, which is induced by HIF-1 and HIF-2 under hypoxia and promotes cell survival.

Results

Under hypoxia and nutrient starvation, AMPK activity and ATM expression were increased in LM217?cells and decreased in HepG2 cells compared with AMPK activity under nutrient starvation alone or ATM expression under hypoxia alone. Under hypoxia and nutrient starvation, radiosensitivity was decreased in LM217?cells and increased in HepG2 cells compared with radiosensitivity under hypoxia alone. Under hypoxia and nutrient starvation, knockdown of AMPK decreased ATM activity and increased radiation sensitivity in LM217?cells. In both cell lines, mTORC1 activity was decreased under hypoxia and nutrient starvation. Under hypoxia alone, knockdown of mTOR slightly increased ATM expression but did not affect radiosensitivity in LM217. Under hypoxia and nutrient starvation, HIF-1α expression was suppressed and glycogen storage was reduced.

Conclusion

Our data suggest that AMPK regulates ATM expression and partially regulates radiosensitivity under hypoxia and nutrient starvation. The molecular mechanism underlying the induction of ATM expression by AMPK remains to be elucidated.  相似文献   
10.
There is now little doubt of the existence of radioprotective mechanisms, or stress responses, that are upregulated in response to exposure to small doses of ionizing radiation and other DNA-damaging agents. Phenomenologically, there are two ways in which these induced mechanisms operate. First, a small conditioning dose (generally below 30 cGy) may protect against a subsequent, separate, exposure to radiation that may be substantially larger than the initial dose. This has been termed the adaptive response. Second, the response to single doses may itself be dose-dependent so that small acute radiation exposures, or exposures at very low dose rates, are more effective per unit dose than larger exposures above the threshold where the induced radioprotection is triggered. This combination has been termed low-dose hypersensitivity (HRS) and induced radioresistance (IRR) as the dose increases. Both the adaptive response and HRS/IRR have been well documented in studies with yeast, bacteria, protozoa, algae, higher plant cells, insect cells, mammalian and human cells in vitro, and in studies on animal models in vivo. There is indirect evidence that the HRS/IRR phenomenon in response to single doses is a manifestation of the same underlying mechanism that determines the adaptive response in the two-dose case and that it can be triggered by high and low LET radiations as well as a variety of other stress-inducing agents such as hydrogen peroxide and chemotherapeutic agents although exact homology remains to be tested. Little is currently known about the precise nature of this underlying mechanism, but there is evidence that it operates by increasing the amount and rate of DNA repair, rather than by indirect mechanisms such as modulation of cell-cycle progression or apoptosis. Changed expression of some genes, only in response to low and not high doses, may occur within a few hours of irradiation and this would be rapid enough to explain the phenomenon of induced radioresistance although its specific molecular components have yet to be identified.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号