首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   7篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   4篇
  2013年   9篇
  2012年   6篇
  2011年   9篇
  2010年   6篇
  2009年   3篇
  2008年   9篇
  2007年   4篇
  2006年   2篇
  2005年   6篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
排序方式: 共有77条查询结果,搜索用时 312 毫秒
1.
To date, parathyroid hormone is the only clinically available bone anabolic drug. The major difficulty in the development of such drugs is the lack of clarification of the mechanisms regulating osteoblast differentiation and bone formation. Here, we report a peptide (W9) known to abrogate osteoclast differentiation in vivo via blocking receptor activator of nuclear factor-κB ligand (RANKL)-RANK signaling that we surprisingly found exhibits a bone anabolic effect in vivo. Subcutaneous administration of W9 three times/day for 5 days significantly augmented bone mineral density in mouse cortical bone. Histomorphometric analysis showed a decrease in osteoclastogenesis in the distal femoral metaphysis and a significant increase in bone formation in the femoral diaphysis. Our findings suggest that W9 exerts bone anabolic activity. To clarify the mechanisms involved in this activity, we investigated the effects of W9 on osteoblast differentiation/mineralization in MC3T3-E1 (E1) cells. W9 markedly increased alkaline phosphatase (a marker enzyme of osteoblasts) activity and mineralization as shown by alizarin red staining. Gene expression of several osteogenesis-related factors was increased in W9-treated E1 cells. Addition of W9 activated p38 MAPK and Smad1/5/8 in E1 cells, and W9 showed osteogenesis stimulatory activity synergistically with BMP-2 in vitro and ectopic bone formation. Knockdown of RANKL expression in E1 cells reduced the effect of W9. Furthermore, W9 showed a weak effect on RANKL-deficient osteoblasts in alkaline phosphatase assay. Taken together, our findings suggest that this peptide may be useful for the treatment of bone diseases, and W9 achieves its bone anabolic activity through RANKL on osteoblasts accompanied by production of several autocrine factors.  相似文献   
2.
3.
Transforming growth factor-beta (TGF-beta) has been shown to both inhibit and to stimulate bone resorption and osteoclastogenesis. This may be due, in part, to differential effects on bone marrow stromal cells that support osteoclastogenesis vs. direct effects on osteoclastic precursor cells. In the present study, we used the murine monocytic cell line, RAW 264.7, to define direct effects of TGF-beta on pre-osteoclastic cells. In the presence of macrophage-colony stimulating factor (M-CSF) (20 ng/ml) and receptor activator of NF-kappaB ligand (RANK-L) (50 ng/ml), TGF-beta1 (0.01-5 ng/ml) dose-dependently stimulated (by up to 120-fold) osteoclast formation (assessed by the presence of tartrate-resistant acid phosphatase (TRAP) positive multinucleated cells and expression of calcitonin and vitronectin receptors). In addition, TGF-beta1 also increased steady state RANK mRNA levels in a time- (by up to 3.5-fold at 48 h) and dose-dependent manner (by up to 2.2-fold at 10 ng/ml). TGF-beta1 induction of RANK mRNA levels was present both in undifferentiated RAW cells as well as in cells that had been induced to differentiate into osteoclasts by a 7-day treatment with M-CSF and RANK-L. Using a fluorescence-labeled RANK-L probe, we also demonstrated by flow cytometry that TGF-beta1 resulted in a significant increase in the percentage of RANK+ RAW cells (P < 0.05), as well as an increase in the fluorescence intensity per cell (P < 0.05), the latter consistent with an increase in RANK protein expression per cell. These data thus indicate that TGF-beta directly stimulates osteoclastic differentiation, and this is accompanied by increased RANK mRNA and protein expression.  相似文献   
4.
5.
破骨细胞和成骨细胞分别介导骨的吸收过程和合成过程,而OPG、RANKRANKL在调节二者的比例中发挥非常重要的作用.RANKL与RANK结合后可能通过三种途径:JNK途径、NF-κB途径和蛋白激酶B途径参与破骨细胞的分化,促进骨质的吸收;RANKL与OPG结合后能阻断RANKL与RANK的结合,由于缺乏RANKL-RANK产生的转录活化信号,破骨细胞分化成熟发生障碍,骨质的吸收受到抑制.OPG、RANKRANKL同时也是免疫分子,在淋巴细胞、淋巴器官的分化、发育中起重要的作用,骨疾病与免疫系统之间存在着一定的关系.RANMKL/RANKRANKI/OPG在生物体内保持着一定的比率,如果比率失衡,就会引起各种骨疾病.本篇综述总结了近年来OPG、RANKRANKL结构、作用的新进展以及它们在骨疾病中的作用.  相似文献   
6.
Flavonols, in contrast to soybean isoflavones, are the most abundant phytoestrogens in western diets, being present in onions, beans, fruits, red wine, and tea. They may protect against atherosclerosis, inhibit certain cancer cell types, and reduce bone resorption. The most widely distributed flavonol is quercetin, which occurs mainly as its glycoside, rutin, but data are very scarce regarding the precise mechanism of action of these compounds on bone-resorbing cells at concentrations similar to those detected in human plasma. We have therefore investigated the effects of nanomolar concentrations of quercetin and rutin on the development and activity of osteoclasts in vitro compared with the effects of 17-estradiol. Nonadherent porcine bone marrow cells were cultured on dentine slices in the presence of 10 nM 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), with or without 10 nM quercetin, 10 nM rutin or 10 nM 17-estradiol for 11 days. Multinuclear TRAP+ cells that resorbed dentine (osteoclasts) developed in the presence of 1,25(OH)2D3, but their number was significantly reduced by quercetin, rutin, and 17-estradiol (P < 0.05). Like 17-estradiol, both flavonols also significantly reduced resorption (P<0.05) as assessed by the size of pits resorbed on dentine slices. Osteoclasts and osteoclast progenitors contained estrogen receptor (ER), ER, and RANK proteins. Both flavonols increased nuclear ER protein and decreased ER protein of osteoclast progenitors. Moreover, rutin reduced RANK protein, whereas 17-oestradiol and quercetin promoted apoptosis by cleavage of caspase-8 and caspase-3. All the effects of flavonols were reversed by 1 M ICI 182,780, an estrogen antagonist. Thus, the anti-resorbing properties of flavonols are mainly mediated by ER proteins through the inhibition of RANK protein or the activation of caspases.C.M.R. was supported by a grant from CAPES (Department of Education, Brasilia, Brasil).  相似文献   
7.
8.
Osteoprotegerin (OPG) is a decoy receptor for receptor activator of nuclear factor kappaB ligand (RANKL), a key inducer of osteoclastogenesis via its receptor RANK. We previously showed that RANK, RANKL, and OPG are able to form a tertiary complex and that OPG must be also considered as a direct effector of osteoclast functions. As OPG contains a heparin-binding domain, the present study investigated the interactions between OPG and glycosaminoglycans (GAGs) by surface plasmon resonance and their involvement in the OPG functions. Kinetic data demonstrated that OPG binds to heparin with a high-affinity (KD: 0.28 nM) and that the pre-incubation of OPG with heparin inhibits in a dose-dependent manner the OPG binding to the complex RANK-RANKL. GAGs from different structure/origin (heparan sulfate, dermatan sulfate, and chondroitin sulfate) exert similar activity on OPG binding. The contribution of the sulfation pattern and the size of the oligosaccharide were determined in this inhibitory mechanism. The results demonstrated that sulfation is essential in the OPG-blocking function of GAGs since a totally desulfated heparin loses its capacity to bind and to block OPG binding to RANKL. Moreover, a decasaccharide is the minimal structure that totally inhibits the OPG binding to the complex RANK-RANKL. Western blot analysis performed in 293 cells surexpressing RANKL revealed that the pre-incubation of OPG with these GAGs strongly inhibits the OPG-induced decrease of membrane RANKL half-life. These data support an essential function of the related glycosaminoglycans heparin and heparan sulfate in the activity of the triad RANK-RANKL-OPG.  相似文献   
9.
10.
Receptor activator of nuclear factor-kappa B (RANK) and its ligand, RANKL play critical roles in bone re-modeling, immune function, vascular disease and mammary gland development. To study the interaction of RANK and RANKL, we have expressed both extracellular domain of RANK and ectodomain of RANKL using Escherichia coli expression system. RANK was expressed as an inclusion body first which properly refolded later, while RANKL was initially produced as a GST fusion protein, after which the GST was removed by enzyme digestion. Soluble RANK existed as a monomer while RANKL was seen as a trimer in solution, demonstrated by gel filtration chromatography and cross-linking experiment. The recombinant RANK and RANKL could bind to each other and the binding affinity of RANKL for RANK was measured with surface plasmon resonance technology and KD value is about 1.09 × 10−10 M.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号