首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7685篇
  免费   780篇
  国内免费   264篇
  2023年   95篇
  2022年   90篇
  2021年   219篇
  2020年   219篇
  2019年   280篇
  2018年   240篇
  2017年   259篇
  2016年   289篇
  2015年   354篇
  2014年   419篇
  2013年   485篇
  2012年   435篇
  2011年   356篇
  2010年   317篇
  2009年   497篇
  2008年   423篇
  2007年   395篇
  2006年   360篇
  2005年   352篇
  2004年   258篇
  2003年   225篇
  2002年   201篇
  2001年   176篇
  2000年   177篇
  1999年   158篇
  1998年   145篇
  1997年   142篇
  1996年   138篇
  1995年   95篇
  1994年   119篇
  1993年   97篇
  1992年   90篇
  1991年   70篇
  1990年   68篇
  1989年   51篇
  1988年   52篇
  1987年   45篇
  1986年   37篇
  1985年   27篇
  1984年   44篇
  1983年   25篇
  1982年   28篇
  1981年   38篇
  1980年   28篇
  1979年   26篇
  1978年   18篇
  1977年   12篇
  1976年   19篇
  1974年   7篇
  1973年   11篇
排序方式: 共有8729条查询结果,搜索用时 15 毫秒
1.
A partial swine cDNA which encodes the functional domain of PIT-1 was isolated by the polymerse chain reaction (PCR). The swine PIT-1 cDNA clone is 95% identical at the protein level to the rat Pit-1 gene. Thus, Pit-l's known function in control of rat growth hormone and prolactin expression is likely to be conserved in swine. This swine cDNA clone was used to investigate genetic variability at PIT-1 in several American and Chinese breeds. Polymorphic BamIII fragments were found in pure-bred Meishan animals (n= 13), but only monomorphic fragments in five American breeds (n= 36).  相似文献   
2.
Conservation genetics: beyond the maintenance of marker diversity   总被引:8,自引:0,他引:8  
One of the major problems faced by conservation biologists is the allocation of scarce resources to an overwhelmingly large number of species in need of preservation efforts. Both demographic and genetic information have been brought to bear on this problem; however, the role of information obtained from genetic markers has largely been limited to the characterization of gene frequencies and patterns of diversity. While the genetic consequences of rarity may be a contributing factor to endangerment, it is widely recognized that demographic factors often may be more important. Because patterns of genetic marker variation are influenced by the same demographic factors of interest to the conservation biologist, it is possible to extract useful demographic information from genetic marker data. Such an approach may be productive for determining plant mating systems, inbreeding depression, effective population size, and metapopulation structure. In many cases, however, data consisting only of marker frequencies are inadequate for these purposes. Development of genealogical based analytical methods coupled with studies of DNA sequence variation within and among populations is likely to yield the most information on demographic processes from genetic marker data. Indeed, in some cases it may be the only means of obtaining information on the long-term demographic properties that may be most useful for determining the future prospects of a species of interest.  相似文献   
3.
The amount of genetic variation for resistance to foot rot caused by Pseudocercosporella herpotrichoides, Fusarium spp., and Microdochium nivale and for resistance to head blight caused by Fusarium culmorum are important parameters when estimating selection gain from recurrent selection in winter rye. One-hundred and eighty-six full-sib families of the selfincompatible population variety Halo, representing the Petkus gene pool, were tested for foot-rot resistance at five German location-year combinations (environments) and for head-blight resistance in three environments with artificial inoculation in all but one environment. Foot-rot rating was based on 25 stems per plot scored individually on a 1–9 scale. Head-blight resistance was plotwise scored on a 1–9 scale and, additionally, grain-weight per spike was measured relative to the non-inoculated control plots. Significant estimates of genotypic variance and medium-sized heritabilities (h 2=0.51–0.69) were observed in the combined analyses for all resistance traits. In four out of five environments, the amount of genetic variance was substantially smaller for foot-rot than for head-blight rating. Considerable environmental effects and significant genotype-environment interactions were found for both foot-rot and head-blight resistance. Coefficients of error-corrected correlation among environments were considerably closer than phenotypic correlations. No significant association was found between the resistances to both diseases (r=-0.20 to 0.17). In conclusion, intra-population improvement by recurrent selection should lead to substantial higher foot-rot and head-blight resistances due to significant quantitative genetic variation within Halo. Selection should be carried out in several environments. Lack of correlation between foot-rot and head-blight resistance requires separate infection tests for improving both resistances.  相似文献   
4.
Long dinucleotide repeats found in exons present a substantial mutational hazard: mutations at these loci occur often and generate frameshifts. Here, we provide clear and compelling evidence that exonic dinucleotides experience strong selective constraint. In humans, only 18 exonic dinucleotides have repeat lengths greater than six, which contrasts sharply with the genome‐wide distribution of dinucleotides. We genotyped each of these dinucleotides in 200 humans from eight 1000 Genomes Project populations and found a near‐absence of polymorphism. More remarkably, divergence data demonstrate that repeat lengths have been conserved across the primate phylogeny in spite of what is likely considerable mutational pressure. Coalescent simulations show that even a very low mutation rate at these loci fails to explain the anomalous patterns of polymorphism and divergence. Our data support two related selective constraints on the evolution of exonic dinucleotides: a short‐term intolerance for any change to repeat length and a long‐term prevention of increases to repeat length. In general, our results implicate purifying selection as the force that eliminates new, deleterious mutants at exonic dinucleotides. We briefly discuss the evolution of the longest exonic dinucleotide in the human genome—a 10 x CA repeat in fibroblast growth factor receptor‐like 1 (FGFRL1)—that should possess a considerably greater mutation rate than any other exonic dinucleotide and therefore generate a large number of deleterious variants.  相似文献   
5.
Harmful cyanobacteria are a globally growing concern. They produce a large variety of toxic compounds, including saxitoxin and its many structural variants, a group of potent neurotoxins collectively called paralytic shellfish toxins or PST. Nucleic acid based detection methods, such as qPCR, have been proposed as potential screening and monitoring tools for toxic cyanobacteria, but it is not clear how well the presence and quantity of saxitoxin biosynthesis (sxt) genes can be used to predict the production of PST in the environment. In this study, the prevalence of three sxt genes and their co-occurrence with paralytic shellfish toxins in the environment was investigated. The sxtA, sxtG and sxtB genes were present on average in 31% of the samples collected from lakes and brackish coastal waters on Åland Islands, Finland, during the three-year monitoring period. PST detection frequency varied from 13% to 59% from year to year, and concentrations were generally low. On average higher sxtB copy numbers were associated with PST detection, and although a positive correlation between gene copy numbers and toxin concentrations was observed (Spearman rank correlation, ρ = 0.53, P = 0.012), sxt gene presence or quantity didn’t reliably predict PST production. Sequencing of sxtA fragments and identification of main cyanobacteria indicated that the likely candidate responsible for PST production in the samples belonged to the genus Anabaena.  相似文献   
6.
The distribution of arable weeds extends over regions, where the species occur naturally in different kinds of habitats and regions, where they are mainly limited to arable fields.Here, we present a comparative study on the genetic structure of the arable weed Sherardia arvensis L. comprising populations from Mediterranean grasslands in Southern France and populations from arable fields in Germany. Enhanced by intensified land use since the 1960th, overall population density in Germany is very low compared to the density of populations in Southern France. We tested whether genetic variation within and among populations differ between France and Germany due to different patterns of distribution and land use. Therefore, we analysed 231 individuals of S. arvensis from 24 populations using AFLPs. Based on fragment analysis data we compared spatial genetic structure and genetic variation of populations from the two regions.Genetic variation within populations from the two regions (Shannon Index = 0.13 for both) and genetic variation among populations (26.8% and 30.0% in an analysis of molecular variance) were comparable. In both regions a drift-migration model supported the assumption of gene flow between populations. However, a clear correlation of geographical and genetic distances could only be reported for the indigenous populations from France (r = 0.46; P = 0.02), whereas in Germany a spatial genetic relationship between populations was missing (r = 0.16; P = 0.21).Our study revealed that neither French nor German populations are genetically impoverished. For French populations further the spatial genetic structure suggests that there is current gene flow between populations through pollinators and seed dispersal by cattle. For German populations comparable levels of genetic diversity and gene flow were detected, but gene flow was random. This can be traced back in all likelihood to diffuse dispersal by agriculture and the mechanical reshuffling of the individuals from the soil seed bank.  相似文献   
7.
A method for estimating and comparing population genetic variation using random amplified polymorphic DNA (RAPD) profiling is presented. An analysis of molecular variance (AMOVA) is extended to accomodate phenotypic molecular data in diploid populations in Hardy-Weinberg equilibrium or with an assumed degree of selfing. We present a two step strategy: 1) Estimate RAPD site frequencies without preliminary assumptions on the unknown population structure, then perform significance testing for population substructuring. 2) If population structure is evident from the first step, use this data to calculate better estimates for RAPD site frequencies and sub-population variance components. A nonparametric test for the homogeneity of molecular variance (HOMOVA) is also presented. This test was designed to statistically test for differences in intrapopulational molecular variances (heteroscedasticity among populations). These theoretical developments are applied to a RAPD data set in Vaccinium macrocarpon (American cranberry) using small sample sizes, where a gradient of molecular diversity is found between central and marginal populations. The AMOVA and HOMOVA methods provide flexible population analysis tools when using data from RAPD or other DNA methods that provide many polymorphic markers with or without direct allelic data.  相似文献   
8.
9.
Biologists and philosophers have been extremely pessimistic about the possibility of demonstrating random drift in nature, particularly when it comes to distinguishing random drift from natural selection. However, examination of a historical case – Maxime Lamotte’s study of natural populations of the land snail, Cepaea nemoralis in the 1950s – shows that while some pessimism is warranted, it has been overstated. Indeed, by describing a unique signature for drift and showing that this signature obtained in the populations under study, Lamotte was able to make a good case for a significant role for␣drift. It may be difficult to disentangle the causes of drift and selection acting in a population, but it is not (always) impossible.  相似文献   
10.
Most advocates of biogenetic modification hope to amplify existing human traits in humans in order to increase the value of such traits as intelligence and resistance to disease. These advocates defend such enhancements as beneficial for the affected parties. By contrast, some commentators recommend certain biogenetic modifications to serve social goals. As Ingmar Persson and Julian Savulescu see things, human moral psychology is deficient relative to the most important risks facing humanity as a whole, including the prospect of Ultimate Harm, the point at which worthwhile life is forever impossible on the planet. These risks can be mitigated, they say, by enhancing moral psychology in novel ways. Persson and Savulescu argue that some parents should modify the underlying biogenetics of their children's moral psychology, if such measures were safe and effective, but they admit these interventions may not decouple humanity from Ultimate Harm. Neither are these modifications the only options, they concede, for addressing risks to humanity. Even with these concessions, saving humanity from itself is a fairly poor reason to modify the moral psychology of children. In most ways, adults would be better candidates, morally speaking, for modifications of psychology. Even then, there is no direct link between morally enhanced human beings and the hoped‐for effect of better protection from Ultimate Harm. Asserting a general duty of all to contribute to the avoidance of Ultimate Harm is a better moral strategy than intervening in the moral psychology of some, even though meeting that duty may involve substantial interference with the free exercise of one's interests.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号