首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1290篇
  免费   28篇
  国内免费   16篇
  2023年   3篇
  2022年   29篇
  2021年   16篇
  2020年   25篇
  2019年   31篇
  2018年   29篇
  2017年   24篇
  2016年   30篇
  2015年   60篇
  2014年   134篇
  2013年   89篇
  2012年   141篇
  2011年   122篇
  2010年   82篇
  2009年   103篇
  2008年   82篇
  2007年   76篇
  2006年   68篇
  2005年   58篇
  2004年   69篇
  2003年   36篇
  2002年   23篇
  2001年   3篇
  2000年   1篇
排序方式: 共有1334条查询结果,搜索用时 15 毫秒
1.
Mechanical strain associated with the expanding uterus correlates with increased preterm birth rates. Mechanical signals result in a cascading network of protein phosphorylation events. These signals direct cellular activities and may lead to changes in contractile phenotype and calcium signaling. In this study, the complete phospho-proteome of uterine smooth muscle cells subjected to mechanical strain for 5 min was compared to un-strained controls. Statistically significant, differential phosphorylation events were annotated by Ingenuity Pathway Analysis to elucidate mechanically induced phosphorylation networks. Mechanical strain leads to the direct activation of ERK1/2, HSPB1, and MYL9, in addition to phosphorylation of PAK2, vimentin, DOCK1, PPP1R12A, and PTPN11 at previously unannotated sites. These results suggest a novel network reaction to mechanical strain and reveal proteins that participate in the activation of contractile mechanisms leading to preterm labor.  相似文献   
2.
Proteomic analysis provides a powerful method of studying plant responses to stress at the protein level. In order to study stress-responsive molecular mechanisms for Populus × euramericana cv. ‘74/76’, one of the most important forest plantation tree species in subtropical and temperate regions, we analyzed the response of 2-year-old cuttings of P. × euramericana cv. ‘74/76’ to drought and high temperature using two-dimensional gel electrophoresis. More than 1,000 reproducible leaf proteins were detected in the controls and treatments, and 26 proteins were found to change notably in abundance. We identified 13 proteins affected by drought stress and 11 proteins affected by high temperature. These proteins are mainly involved in photosynthesis such as ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit and putative photosystem I reaction center subunit II precursor, and detoxification (manganese superoxide dismutase and methionine sulfoxide reductase A). Furthermore, the level of the photosynthesis proteins affected greatly by the imposed stress conditions was consistent with the observed noticeable decrease in net photosynthesis rate. These studies provides a fundamental data for future research on responses to drought and high temperature, two major factors limiting the growth of forest trees during summer under recent climatic warming.  相似文献   
3.
4.
Methylation of specific histone residues is capable of both gene activation and silencing. Despite vast work on the function of methylation, most studies either present a static snapshot of methylation or fail to assign kinetic information to specific residues. Using liquid chromatography-tandem mass spectrometry on a high-resolution mass spectrometer and heavy methyl-SILAC labeling, we studied site-specific histone lysine and arginine methylation dynamics. The detection of labeled intermediates within a methylation state revealed that mono-, di-, and trimethylated residues generally have progressively slower rates of formation. Furthermore, methylations associated with active genes have faster rates than methylations associated with silent genes. Finally, the presence of both an active and silencing mark on the same peptide results in a slower rate of methylation than the presence of either mark alone. Here we show that quantitative proteomic approaches such as this can determine the dynamics of multiple methylated residues, an understudied portion of histone biology.  相似文献   
5.
6.
血浆蛋白质组学是研究血浆蛋白质的功能和变化的一门科学。血浆中蕴藏着生命机体的所有信息,因此只有彻底了解血浆中存在哪些蛋白质,才能知道如何利用血浆来预测人体对疾病的易感性并监控疾病的进程,以期达到对疾病进行早诊断早治疗。由于血浆蛋白质组动态范围大,给研究带来了很大的困难。尤其是高丰度蛋白质的存在影响了低丰度蛋白质的检测率。而低丰度蛋白质都是有意义的具有临床诊断价值的蛋白质。因此去除高丰度蛋白质的干扰成了血浆蛋白质组学研究的关键。近年来,血浆蛋白质组学相关研究技术也得到了长足进展,为深入研究血浆蛋白质做出了重要贡献。血浆蛋白质组学作为一种无创性的研究方法,值得我们去探讨。本文就血浆蛋白质组学研究进展情况做一简要综述。  相似文献   
7.
蛋白质翻译后修饰对蛋白质成熟、结构和功能多样性有决定性的作用。但蛋白质翻译后修饰的多样性、普遍性、动态性,使传统的生物化学方法在全局水平上理解翻译后修饰非常有限,对它们的研究、特别是大规模的研究长期发展缓慢。现在,在实验研究基础上,借助多方面的生物信息学方法,可以快速高通量的预测和鉴定蛋白质翻译后修饰。一方面,可以从序列角度出发,基于酶识别底物的特异性,用位点权重矩阵、支持向量机等算法,从底物蛋白质序列提取修饰相关的保守序列,并用于预测翻译后修饰位点。这种方法相对成熟,能够取得较理想的预测准确性,但不能反映不同时间不同细胞的翻译后修饰状态。另一方面,可从质谱数据分析出发,有望捕获细胞内翻译后修饰的动态特性。质谱分析的高灵敏度、高准确度和高通量的能力已使建立在质谱基础上的蛋白质组学成为研究翻译后修饰的重要工具,生物信息学方法和质谱蛋白质组学的结合则更可以加速研究翻译后修饰的进程。本文从序列和质谱分析两个角度总结评价了各种翻译后修饰相关生物信息学方法的研究近况,重点讨论利用质谱数据鉴定翻译后修饰的新思路。  相似文献   
8.
Cardiac hypertrophy induced by exercise is associated with less cardiac fibrosis and better systolic and diastolic function, suggesting that the adaptive mechanisms may exist in exercise-induced hypertrophy. To identify molecular mechanisms by which exercise training stimulates this favorable phenotype, a proteomic approach was employed to detect rat cardiac proteins that were differentially expressed or modified after exercise training. Sixteen male Sprague–Dawley rats were divided into trained (T) and control(C). T rats underwent eight weeks of swimming training seven days/week, using a high intensity protocol. Hearts were used to generate 2-D electrophoretic proteome maps. Training significantly altered 23 protein spot intensities (P < 0.05), including proteins associated with the mitochondria oxidative metabolism, such as prohibitin, malate dehydrogenase, short-chain acyl-CoA dehydrogenase, triosephosphate isomerase, electron transfer flavoprotein subunit beta, ndufa10 protein, ATP synthase subunit alpha and isocitrate dehydrogenase [NAD] subunit. Additionally, Prohibitin was increased in the exercise-induced hearts. Cytoskeletal, signal pathway, stress and oxidative proteins also increased within T groups. These results strongly support the notion that the observed changes in the expression of energy metabolism proteins resulted in a potential increase in the capacity to synthesise ATP, probably via mitochondrial oxidative metabolism. The observed changes in the expression of these metabolic and structural proteins induced by training may beneficially influence heart metabolism, stress response and signalling paths, and therefore improve the overall cardiac function.  相似文献   
9.
The emergence of coronavirus disease 2019 (COVID-19) pandemic in Wuhan city, China at the end of 2019 made it urgent to identify the origin of the causal pathogen and its molecular evolution, to appropriately design an effective vaccine. This study analyzes the evolutionary background of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or SARS-2) in accordance with its close relative SARS-CoV (SARS-1), which was emerged in 2002. A comparative genomic and proteomic study was conducted on SARS-2, SARS-1, and Middle East respiratory syndrome coronavirus (MERS), which was emerged in 2012. In silico analysis inferred the genetic variability among the tested viruses. The SARS-1 genome harbored 11 genes encoding 12 proteins, while SARS-2 genome contained only 10 genes encoding for 10 proteins. MERS genome contained 11 genes encoding 11 proteins. The analysis also revealed a slight variation in the whole genome size of SARS-2 comparing to its siblings resulting from sequential insertions and deletions (indels) throughout the viral genome particularly ORF1AB, spike, ORF10 and ORF8. The effective indels were observed in the gene encoding the spike protein that is responsible for viral attachment to the angiotensin-converting enzyme 2 (ACE2) cell receptor and initiating infection. These indels are responsible for the newly emerging COVID-19 variants αCoV, βCoV, γCoV and δCoV. Nowadays, few effective COVID-19 vaccines developed based on spike (S) glycoprotein were approved and become available worldwide. Currently available vaccines can relatively prevent the spread of COVID-19 and suppress the disease. The traditional (killed or attenuated virus vaccine and antibody-based vaccine) and innovated vaccine production technologies (RNA- and DNA-based vaccines and viral vectors) are summarized in this review. We finally highlight the most common questions related to COVID-19 disease and the benefits of getting vaccinated.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号