首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
  2021年   1篇
  2020年   1篇
  2015年   4篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   5篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  1998年   1篇
  1997年   1篇
  1992年   2篇
  1989年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
目的建立阿霉素大鼠肾病模型,并观察模型的动态变化。方法 26只Wistar雄性大鼠随机分为模型组(13只)和空白组(13只),模型组单次尾静脉注射阿霉素6.2 mg/kg,空白组注射等容积生理盐水。检测连续10周12 h尿蛋白定量、终末血生化指标,光镜、电镜下观察各组大鼠肾脏病理改变。结果模型组12 h尿蛋白定量造模后1周与空白组差异有显著性(P0.01),第5周达到高峰;血总蛋白、白蛋白均低于空白组,甘油三酯、胆固醇、血尿素氮均高于空白组(均P0.05),血肌酐差异无显著性(P=0.64)。肾脏病理改变:第5周为微小病变型,第10周为局灶性节段性肾小球硬化。结论单次尾静脉注射6.2 mg/kg阿霉素,可以成功建立渐进性的大鼠肾病综合征模型。  相似文献   
2.
Free fatty acid-bound albumin (FFA-albumin)-related oxidative stress is involved in the pathogenesis of proximal tubular cell (PTC) damage and subsequent renal dysfunction in patients with refractory proteinuria. Nicotinamide adenine dinucleotide (NAD) metabolism has recently been focused on as a novel therapeutic target for several modern diseases, including diabetes. This study was designed to identify a novel molecule in NAD metabolism to protect PTCs from lipotoxicity-related oxidative stress. Among 19 candidate enzymes involved in mammalian NAD metabolism, the mRNA expression level of nicotinamide n-methyltransferase (NNMT) was significantly increased in both the kidneys of FFA-albumin-overloaded mice and cultured PTCs stimulated with palmitate-albumin. Knockdown of NNMT exacerbated palmitate-albumin-induced cell death in cultured PTCs, whereas overexpression of NNMT inhibited it. Intracellular concentration of 1-Methylnicotinamide (1-MNA), a metabolite of NNMT, increased and decreased in cultured NNMT-overexpressing and -knockdown PTCs, respectively. Treatment with 1-MNA inhibited palmitate-albumin-induced mitochondrial reactive oxygen species generation and cell death in cultured PTCs. Furthermore, oral administration of 1-MNA ameliorated oxidative stress, apoptosis, necrosis, inflammation, and fibrosis in the kidneys of FFA-albumin-overloaded mice. In conclusion, NNMT-derived 1-MNA can reduce lipotoxicity-mediated oxidative stress and cell damage in PTCs. Supplementation of 1-MNA may have potential as a new therapy in patients with refractory proteinuria.  相似文献   
3.
Reduction of vascular endothelial growth factor (VEGF) expression plays a crucial role in chronic kidney disease (CKD). In order to clarify a cause of VEGF suppression in CKD, we examined an interaction between proteinuria and VEGF. Rat proximal tubular cells were subjected to hypoxia with or without albumin to mimic proteinuric conditions, and VEGF expression was assessed by real-time quantitative PCR and enzyme-linked immunosorbent assays. Albumin significantly reduced VEGF expression under hypoxia. Luciferase activity controlled by hypoxia-responsive element (HRE) was suppressed by albumin, demonstrating suppression of the hypoxia-inducible factor (HIF)/HRE pathway. Studies utilizing a proteasome inhibitor and a prolyl hydroxylase inhibitor showed that mechanisms of HIF/HRE pathway suppression by albumin load did not involve degradation of HIF protein levels. Further, albumin did not change HIF mRNA levels. Our data, for the first time, suggest a clear ‘link’ between proteinuria and hypoxia, the two principal pathogenic factors for CKD progression.  相似文献   
4.
2 bromoethanamine hydrobromide (BEA) has been widely considered to be a target selective nephrotoxin that causes necrosis of the medulla in 24-48 h, but recent reports suggest that early cortical injury is also associated with this lesion. In order to assess the cortical effects of BEA (100 mg kg-1 bw single ip injection), several urinary markers of renal injury were evaluated over a 7 day period in male Wistar Albino rats. Hexachlorobutadiene (HCBD 150 mg kg-1 bw in peanut oil ip), a renal toxin which targets selectively for the proximal tubule, was used as a comparison. After BEA treatment, urinary levels of alanine aminopeptidase, gamma-glutamyl-transpeptidase, alkaline phosphatase and glucose increased transiently. Each of the proximal tubule marker enzymes peaked earlier following HCBD treatment and elevation of alanine aminopeptidase and gamma glutamyl transpeptidase was sustained for longer periods than for BEA. Following BEA treatment, lactate dehydrogenase rose prominently on day 1 followed by a return to control values on day 2 and a further rise on day 3 and remained high until the end of the study. BEA also increased the urinary excretion of total protein and albumin. After HCBD treatment, lactate dehydrogenase showed a transient elevation and glucose levels were slightly increased. Based on the present observations the changes induced by BEA administration on urinary markers of renal injury are different from those observed following HCBD treatment. These findings suggest that BEA toxicity also involves other parts of the kidney besides the papilla.  相似文献   
5.
Nephrin is a transmembrane molecule essential for morphology and function of kidney podocytes. We and others reported previously that the cytoplasmic domain of human and mouse nephrin interacts with the adaptor protein, Nck, in a tyrosine phosphorylation-dependent manner. In the current study, we characterized the interaction of rat nephrin with Nck and further addressed its impact on cell morphology. Rat nephrin expressed in Cos-1 cells co-immunoprecipitated with Nck in a manner dependent on the phosphorylation of Y1204 and Y1228. Nephrin from normal rat glomeruli was also tyrosine phosphorylated and associated with Nck. Overexpression of rat nephrin in HEK293T cells induced morphological changes resembling process formation, which became more distinct when the extracellular domain of nephrin was cross-linked by antibodies. The morphological changes were attenuated by expression of dominant negative constructs of Nck. In the rat model of podocyte injury and proteinuria, nephrin tyrosine phosphorylation and nephrin-Nck interaction were both reduced significantly. Taken together, we propose that Nck couples nephrin to the actin cytoskeleton in glomerular podocytes and contributes to the maintenance of normal morphology and function of podocytes.  相似文献   
6.

Background

Mounting evidence points to lipid accumulation in the diseased kidney and its contribution to progression of nephropathy. We recently found heavy lipid accumulation and marked dysregulation of lipid metabolism in the remnant kidneys of rats with chronic renal failure (CRF). Present study sought to determine efficacy of niacin supplementation on renal tissue lipid metabolism in CRF.

Methods

Kidney function, lipid content, and expression of molecules involved in cholesterol and fatty acid metabolism were determined in untreated CRF (5/6 nephrectomized), niacin-treated CRF (50 mg/kg/day in drinking water for 12 weeks) and control rats.

Results

CRF resulted in hypertension, proteinuria, renal tissue lipid accumulation, up-regulation of scavenger receptor A1 (SR-A1), acyl-CoA cholesterol acyltransferase-1 (ACAT1), carbohydrate-responsive element binding protein (ChREBP), fatty acid synthase (FAS), acyl-CoA carboxylase (ACC), liver X receptor (LXR), ATP binding cassette (ABC) A-1, ABCG-1, and SR-B1 and down-regulation of sterol responsive element binding protein-1 (SREBP-1), SREBP-2, HMG-CoA reductase, PPAR-α, fatty acid binding protein (L-FABP), and CPT1A. Niacin therapy attenuated hypertension, proteinuria, and tubulo-interstitial injury, reduced renal tissue lipids, CD36, ChREBP, LXR, ABCA-1, ABCG-1, and SR-B1 abundance and raised PPAR-α and L-FABP.

Conclusions and general significance

Niacin administration improves renal tissue lipid metabolism and renal function and structure in experimental CRF.  相似文献   
7.
8.
The role of glomerular SREBP-1c in diabetic nephropathy was investigated. PEPCK-promoter transgenic mice overexpressing nuclear SREBP-1c exhibited enhancement of proteinuria with mesangial proliferation and matrix accumulation, mimicking diabetic nephropathy, despite the absence of hyperglycemia or hyperlipidemia. Isolated transgenic glomeruli had higher expression of TGFβ-1, fibronectin, and SPARC in the absence of marked lipid accumulation. Gene expression of P47phox, p67phox, and PU.1 were also activated, accompanying increased 8-OHdG in urine and kidney, demonstrating that glomerular SREBP-1c could directly cause oxidative stress through induced NADPH oxidase. Similar changes were observed in STZ-treated diabetic mice with activation of endogenous SREBP-1c. Finally, diabetic proteinuria and oxidative stress were ameliorated in SREBP-1-null mice. Adenoviral overexpression of active and dominant-negative SREBP-1c caused consistent reciprocal changes in expression of both profibrotic and oxidative stress genes in MES13 mesangial cells. These data suggest that activation of glomerular SREBP-1c could contribute to emergence and/or progression of diabetic nephropathy.  相似文献   
9.
ObjectiveWe aimed to evaluate the association between baseline plasma zinc and the development of proteinuria as well as possible effect modifiers in hypertensive patients.MethodsThis is a subset of the China Stroke Primary Prevention Trial (CSPPT) Renal Sub-Study. In the CSPPT, participants were randomized to receive a daily oral dose of 1 tablet containing 10 mg enalapril and 0.8 mg folic acid or 1 tablet containing 10 mg enalapril only. A total of 783 participants with plasma zinc measurements and without proteinuria at baseline were included in the current study. The study outcome was the development of proteinuria during the follow-up, defined as a urine dipstick reading of trace or ≥1+ at the exit visit.ResultsDuring a median follow-up duration of 4.4 years, the development of proteinuria occurred in 93 (11.9 %) participants. There was an inverse relation of baseline plasma zinc with the development of proteinuria (per SD increment; OR, 0.74, 95 % CI: 0.55−0.99), p for trend of quartiles = 0.005.ConclusionsIn Chinese hypertensive patients, there was a significant inverse association between baseline plasma zinc and the development of proteinuria, although plasma zinc remained in the reference range.  相似文献   
10.
Immunoglobulin A (IgA) nephropathy is an important cause of end-stage kidney disease (ESKD). Tubulointerstitial inflammation and subsequent fibrosis appear to be a major contributor of the disease progression to ESKD; however, the underlying mechanism is poorly understood. Herein, we report that a unique feature of CYLD expression in kidneys of patients with IgA nephropathy and a CYLD-mediated negative regulation of inflammatory responses in human tubular epithelial cells. Immunochemical staining revealed that CYLD was predominantly expressed in renal tubular epithelial cells in 81% of the patients (37 cases) with proteinuric IgA nephropathy. Patients with positive CYLD had significantly less tubulointerstitial lesions and higher estimated glomerular filtration rate (eGFR) levels when compared with those negative. Logistic regression analysis indicated that eGFR was a predictor for the CYLD expression. In cultured human tubular epithelial HK-2 cells, tumor necrosis factor-alpha (TNFα) up-regulated CYLD expression. Adenoviral knockdown of CYLD did not affect albumin-, hydrogen peroxide (H2O2)-, tunicamycin- or thapsigargin-induced cell death; however, it enhanced TNFα-induced expression of intracellular adhesion molecule (ICAM)-1 as well as activation of c-Jun N-terminal kinase (JNK). Moreover, monocyte adhesion to the TNFα-inflamed HK-2 cells was significantly increased by the CYLD shRNA approach. Taken together, our results suggest that CYLD negatively regulates tubulointertitial inflammatory responses via suppressing activation of JNK in tubular epithelial cells, putatively attenuating the progressive tubulointerstitial lesions in IgA nephropathy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号