首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4128篇
  免费   356篇
  国内免费   87篇
  2023年   92篇
  2022年   74篇
  2021年   149篇
  2020年   148篇
  2019年   181篇
  2018年   148篇
  2017年   121篇
  2016年   114篇
  2015年   121篇
  2014年   237篇
  2013年   315篇
  2012年   164篇
  2011年   198篇
  2010年   134篇
  2009年   168篇
  2008年   174篇
  2007年   195篇
  2006年   171篇
  2005年   146篇
  2004年   127篇
  2003年   110篇
  2002年   121篇
  2001年   74篇
  2000年   61篇
  1999年   69篇
  1998年   59篇
  1997年   54篇
  1996年   54篇
  1995年   49篇
  1994年   49篇
  1993年   60篇
  1992年   52篇
  1991年   43篇
  1990年   49篇
  1989年   43篇
  1988年   45篇
  1987年   39篇
  1986年   31篇
  1985年   37篇
  1984年   37篇
  1983年   33篇
  1982年   50篇
  1981年   26篇
  1980年   35篇
  1979年   39篇
  1978年   18篇
  1977年   19篇
  1976年   14篇
  1975年   5篇
  1973年   7篇
排序方式: 共有4571条查询结果,搜索用时 25 毫秒
1.
Degeneration of mesencephalic dopaminergic (mesDA) neurons is the pathological hallmark of Parkinson’s diseae. Study of the biological processes involved in physiological functions and vulnerability and death of these neurons is imparative to understanding the underlying causes and unraveling the cure for this common neurodegenerative disorder. Primary cultures of mesDA neurons provide a tool for investigation of the molecular, biochemical and electrophysiological properties, in order to understand the development, long-term survival and degeneration of these neurons during the course of disease. Here we present a detailed method for the isolation, culturing and maintenance of midbrain dopaminergic neurons from E12.5 mouse (or E14.5 rat) embryos. Optimized cell culture conditions in this protocol result in presence of axonal and dendritic projections, synaptic connections and other neuronal morphological properties, which make the cultures suitable for study of the physiological, cell biological and molecular characteristics of this neuronal population.  相似文献   
2.
A new peptide with 61 amino acids cross-linked by 4 disulfide bridges, with molecular weight of 6938.12 Da, and an amidated C-terminal amino acid residue was purified and characterized. The primary structure was obtained by direct Edman degradation and sequencing its gene. The peptide is lethal to mammals and was shown to be similar (95% identity) to toxin Ts1 (gamma toxin) from the Brazilian scorpion Tityus serrulatus; it was named Tt1g (from T. trivittatus toxin 1 gamma-like). Tt1g was assayed on several sub-types of Na+-channels showing displacement of the currents to more negative voltages, being the hNav1.3 the most affected channel. This toxin displays characteristics typical to the β-type sodium scorpion toxins. Lethality tests and physiological assays indicate that this peptide is probably the most important toxic component of this species of scorpion, known for causing human fatalities in the South American continent.  相似文献   
3.
目的:探讨CT对于肝脏良性占位性病变及肝癌的鉴别诊断价值。方法:收取2013年3月至2016年3月我院收治的肝脏良性占位性病变及肝癌患者101例作为研究对象,按照病变类型将其分为A、B、C三组。其中A组包含原发性肝癌患者32例,B组包含肝转移癌患者28例,C组包含肝血管瘤患者41例。采用CT全肝灌注扫描模式对三组患者占位病灶组织、病灶周围组织及正常肝脏组织灌注参数进行比较。结果:三组占位病灶组织,B组患者肝动脉灌注量(HAP)最低,C组患者HAP最高;A组患者门静脉灌注量(PVP)最低,C组患者PVP最高,三组两两比较均有显著差异(P0.05)。C组总肝灌注量(TLP)明显高于A组和B组(P0.05),A、B组间无统计学差异(P0.05)。三组肝动脉灌注指数(HPI)无明显差异(P0.05);B组病灶周围组织HAP及HPI明显高于A、C组(P0.05),A、C组间无统计学差异(P0.05);三组PVP及TLP差异不显著(P0.05);三组正常肝脏组织CT灌注参数均无显著差异(P0.05)。结论:CT灌注成像对于原发性肝癌、肝转移癌及肝血管瘤具有一定的鉴别诊断价值,但明确诊断仍需结合其他检测方法进行。  相似文献   
4.
Selective deposition of BaSO4 in the tight junctions (TJs) of frog skins led to profound and reversible functional alterations of these structures, as revealed by changes of tissue conductance (G), clamping current (I), and fluxes of extracellular markers (sulfate (JSO 4) and sucrose (JSUC)). Experiments were performed with nominally Ca2+ -free simple salt solutions on the apical side (usually KCl) and Na2SO4-Ringer on the inner side of skins. The deposition of BaSO4 in the TJs was obtained by diffusion and/or migration through the paracellular path of Ba2+ from the apical solution and SO 4 2– from the inner solution. A brief presence (2 to 6 min) of apical Ba2+ (Ba2+ pulse) is followed (i.e., when Ba2+ is removed from the apical fluid) by a large increase of G, I, JSO 4 and JSUC, above pre-Ba2+ levels. These attain a steady state within 15 to 30 min (overshoot phase), characterizing a conspicuous increase of the paracellular permeability. During the overshoot phase, a second Ba2+ pulse blocks the paracellular route while apical Ba2+ is present, leading to a new and larger overshoot when the Ba2+ pulse is terminated. Addition of apical Ca2+ triggers the resealing of the TJs, resulting in a full recovery of G, I, JSO 4 and JSUC. This Ca2+ -induced recovery persists when apical Ca2+ is removed. The presence of a normal Ca2+ concentration in the inner bathing Ringer does not induce the recovery process. Tissues remain viable after being submitted to the Ba2+ treatment and the subsequent overshoot. Experiments performed in the urinary bladder of Rana catesbeiana and skins and urinary bladders of Bufo marinus indicate that Ba2+ effect can also be elicited in these tissues. The above results seem to report general properties of the TJs. Incidentally, they warn about the use of Ba2+ as an ion channel blocker in epithelial membranes in association with SO 4 2– -containing solutions on the contralateral side.This project was supported by grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (91/0293-7 to F.L.V., and 90/1788-1 to A.S.), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (410068/90-0 and 303633-85/BF to F.L.V.). J.A.C. received a doctoral fellowship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior/Fundação Universidade do Rio Grande. We thank Dr. Alice T. Ferreira for help in the measurements of free Ca2+ concentration.  相似文献   
5.
6.
Tissue homeostasis of skin is sustained by epidermal progenitor cells localized within the basal layer of the skin epithelium. Post‐translational modification of the proteome, such as protein phosphorylation, plays a fundamental role in the regulation of stemness and differentiation of somatic stem cells. However, it remains unclear how phosphoproteomic changes occur and contribute to epidermal differentiation. In this study, we survey the epidermal cell differentiation in a systematic manner by combining quantitative phosphoproteomics with mammalian kinome cDNA library screen. This approach identified a key signaling event, phosphorylation of a desmosome component, PKP1 (plakophilin‐1) by RIPK4 (receptor‐interacting serine–threonine kinase 4) during epidermal differentiation. With genome‐editing and mouse genetics approach, we show that loss of function of either Pkp1 or Ripk4 impairs skin differentiation and enhances epidermal carcinogenesis in vivo. Phosphorylation of PKP1's N‐terminal domain by RIPK4 is essential for their role in epidermal differentiation. Taken together, our study presents a global view of phosphoproteomic changes that occur during epidermal differentiation, and identifies RIPK‐PKP1 signaling as novel axis involved in skin stratification and tumorigenesis.  相似文献   
7.
Hair-follicle-associated pluripotent (HAP) stem cells can differentiate into many cell types, including neurons and heart muscle cells, and have been shown to repair peripheral nerves and the spinal cord in mice. HAP stem cells can be obtained from each individual patient for regenerative medicine which overcomes problems with immune rejection. Previously, we have demonstrated that genetically-encoded protein markers such as GFP in transgenic mice can be used to visualize HAP stem cells in vivo by multiphoton tomography. Detection and visualization of stem cells in vivo without exogenous labels such as GFP would be important for human application. In the present report, we demonstrate label-free visualization of hair follicle stem cells in mouse whiskers by multiphoton tomography due to the intrinsic fluorophores such as NAD(P)H/flavins. We compared multiphoton tomography of GFP-labeled HAP stem cells and unlabeled stem cells in isolated mouse whiskers. We show that observation of HAP stem cells by label-free multiphoton tomography is comparable to detection using GFP-labeled stem cells. The results described here have important implications for detection and isolation of human HAP stem cells for regenerative medicine.  相似文献   
8.
The frog skin host-defense peptide tigerinin-1R (RVCSAIPLPICH.NH2) is insulinotropic both in vitro and in vivo. This study investigates the effects on insulin release and cytotoxicity of changes in cationicity and hydrophobicity produced by selected substitutions of amino acids by l-arginine, l-lysine and l-tryptophan. The [A5W], [L8W] and [I10W] analogs produced a significant (P < 0.01) increase in the rate of insulin release from BRIN-BD11 rat clonal β cells at concentration of 0.01 nM compared with 0.1 nM for tigerinin-1R. The increase in the rate of insulin release produced by a 3 μM concentration of the [S4R], [H12K], and [I10W] analogs from both BRIN-BD11 cells and mouse islets was significantly greater (P < 0.05) than that produced by tigerinin-1R. No peptide stimulated the release of lactate dehydrogenase at concentrations up to 3 μM indicating that plasma membrane integrity had been preserved. [A5W] tigerinin-1R was the only analog tested that showed cytotoxic activity against human erythrocytes (LC50 = 265 ± 16 μM) and inhibited growth of Escherichia coli (MIC = 500 μM) and Staphylococcus aureus (MIC = 250 μM). The circular dichroism spectra of tigerinin-1R and [A5W] tigerinin-1R indicate that the peptides adopt a mixture of β-sheet, random coil and reverse β-turn conformations in 50% trifluoroethanol/water and methanol/water. Administration of [S4R] tigerinin-1R (75 nmol/kg body weight) to high-fat fed mice with insulin resistance significantly (P < 0.05) enhanced insulin release and improved glucose tolerance over a 60 min period following an intraperitoneal glucose load. The study supports the claim that tigerinin-1R shows potential for development into novel therapeutic agents for treatment of type 2 diabetes mellitus.  相似文献   
9.
The protease activity of cultured normal human skin fibroblasts was studied using the synthetic fluorigenic peptides, the modified protein 4-methylumbelliferyl-casein, the thiol inhibitors and the affinity for concanavalin A-Sepharose. The majority of the activity to N-benzyloxycarbonyl-L-phenylalanyl-L-arginyl-7-amido-4-methyl-coumarin and N-a-benzyloxycarbonyl-L-arginyl-arginyl-7-amido-4-methylcoumarin had a pH optimum of 6.0, and was thiol-dependent and inhibited by leupeptin and antipain. The activity toward N-benzyloxycarbonyl-L-phenylalanyl-L-arginyl-7-amido-4-methylcoumarin represents both cathepsin B and cathepsin L, whereas the activity towards 4-methylumbelliferyl-casein represent only cathepsin L. Cathepsin H could not be detected when assayed with L-arginine-7-amido-4-methylcoumarin substrate. Cathepsin D was present in comparatively small amounts when assayed with 4-methylumbelliferyl-casein. Activity towards 4-methylumbelliferyl-casein had pH optima at 3 and 6 and was stimulated by dithiothreitol. A proportion of the activity at pH 6.0 was not dependent on thiols and not inhibited by leupeptin, and had the general characteristics of a carboxyl proteinase. Over 70 per cent of the activity was in the lysosomal fraction and showed structure-linked latency. All the detectable protein emerged from the immobilized concanavalin A column and the fractions eluted by alpha-methyl-D-mannoside were significantly hydrolysed the synthetic peptides. Only that fraction which bound to concanavalin A was active towards 4-methylumbelliferyl-casein. Cathepsin B had no affinity for concanavalin A-Sepharose due to the absence of glycoprotein content, unlike cathepsin L which showed a strong affinity for concanavalin A-Sepharose.  相似文献   
10.
Climatic change and its ecological implications at a subantarctic island   总被引:7,自引:0,他引:7  
Summary Marion Island (47°S, 38°E) has one of the most oceanic climates on earth, with consistently low air temperatures, high precipitation, constantly high humidity, and low incident radiation. Since 1968 mean surface air temperature has increased significantly, by 0.025° C year–1. This was strongly associated with corresponding changes in sea surface temperature but only weakly, or not at all, with variations in radiation and precipitation. We suggest that changing sealevel (atmospheric and oceanic) circulation patterns in the region underlie all of these changes. Sub-Antarctic terrestrial ecosystems are characterized by being species-poor and having a simple trophic structure. Marion Island is no exception and a scenario is presented of the implications of climatic change for the structure and functioning of its ecosystem. Primary production on the island is high and consequently the vegetation has a large annual requirement for nutrients. There are no macroherbivores and even the insects play only a small role as herbivores, so most of the energy and nutrients incorporated in primary production go through a detritus, rather than grazing, cycle. Ameliorating temperatures and increasing CO2 levels are expected to increase productivity and nutrient demand even further. However, most of the plant communities occur on soils which have especially low available levels of nutrients and nutrient mineralization from organic reserves is the main bottleneck in nutrient cycling and primary production. Increasing temperatures will not significantly enhance microbially-mediated mineralization rates since soil microbiological processes on the island are strongly limited by waterlogging, rather than by temperature. The island supports large numbers of soil macro-arthropods, which are responsible for most of the nutrient release from peat and litter. The activities of these animals are strongly temperature dependent and increasing temperature will result in enhanced nutrient availability, allowing the potential for increased primary production due to elevated temperature and CO2 levels to be realized. However, housemice occur on the island and have an important influence on the ecosystem, mainly by feeding on soil invertebrates. The mouse population is strongly temperature-limited and appears to be increasing, possibly as a result of ameliorating temperatures. We suggest that an increasing mouse population, through enhanced predation pressure on soil invertebrates, will decrease overall rates of nutrient cycling and cause imbalances between primary production and decomposition. This, along with more direct effects of mice (e.g. granivory) has important implications for vegetation succession and ecosystem structure and functioning on the island. Some of these are already apparent from comparisons with nearby Prince Edward Island where mice do not occur. Other implications of climatic change for the island are presented which emphasize the very marked influences that invasive organisms have on ecosystem structure and functioning. We suggest that changing sealevel circulation patterns, by allowing opportunities for colonization by new biota, may have an even more important influence on terrestrial sub-Antarctic ecosystems than is suggested merely on the basis of associated changes in temperature or precipitation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号