首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   267篇
  免费   21篇
  国内免费   3篇
  2024年   2篇
  2023年   3篇
  2022年   2篇
  2021年   6篇
  2020年   4篇
  2019年   10篇
  2018年   6篇
  2017年   12篇
  2016年   6篇
  2015年   6篇
  2014年   19篇
  2013年   31篇
  2012年   4篇
  2011年   22篇
  2010年   11篇
  2009年   7篇
  2008年   13篇
  2007年   11篇
  2006年   6篇
  2005年   11篇
  2004年   8篇
  2003年   7篇
  2002年   5篇
  2001年   3篇
  2000年   5篇
  1999年   4篇
  1998年   6篇
  1997年   3篇
  1996年   5篇
  1995年   7篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   5篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1985年   2篇
  1984年   3篇
  1983年   6篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
  1978年   1篇
  1974年   1篇
排序方式: 共有291条查询结果,搜索用时 15 毫秒
1.
Abstract

The conformations of the chains constituting the hydrophilic component of alkyl monolayers and bilayers are investigated by performing molecular dynamics atomistic simulations on these systems at different temperatures. Several monitoring techniques are used to reveal the chain conformations, including atom pair radial distribution functions, evolutions of the torsional angles over thousands of timesteps, frequency distributions of the torsionl angles and ‘snapshot’ plots of the atomic configurations. These methods consistently testify to the stability of the trans (fully extended) character of the strain-free alkyl chains up to room temperature. The chains retain much of this conformation even when the layers are compressed by the application of pressure, to which the chains respond by ‘folding’ at the ends attaching them to the substrate planes while maintaining directions which are mainly normal to these planes. A non-zero gap between the layers is also maintained. A pressure of about 50 kbar abruptly causes all motion in the chains to cease, resulting in a highly ordered lattice structure.  相似文献   
2.
Summary The sensory receptor responsive to pressure applied internally to the ventral abdominal body wall of the blood-feeding insects, Rhodnius prolixus, is a single sense cell containing, at its distal end, a cilium enclosed within a scolopale, a densely staining structure characteristic of insect scolopidial sensilla. A small spherical structure lies within a dilation near the midregion of the cilium, and contains nine heavily staining bodies, the position of each corresponding to a pair of microtubules in the cilium. Proximal to the dilation, the microtubules are organized in a ring of nine pairs with one microtubule of each pair associated with dyneinlike arms. Dastal to the dilation a central pair of microtubules is present, but dyneinlike arms are absent. The scolopale cell, which gives risc to the scolopale, has cytoplasmic invaginations that form an elaborate array of extracellular compartments surrounding the body wall of the sense cell. These compartments may serve to dampen high frequency vibrations permitting the receptor to respond to pressure exerted by touch, an attribute in keeping with the receptor's proposed function of detecting abdominal distension related to the size and movement of the stomach.  相似文献   
3.
Summary The results of a study aimed at the identification of treatment optima for triploidy induction in recently fertilised Oreochromis niloticus L. eggs by altering the intensity, duration and timing of application of pressure, heat and cold shocks are reported. Preliminary, but not directly comparable, trials suggested the following treatments to be close to the individual agent optima. Pressure: 8,000 psi 2-min duration applied 9 min after fertilisation (a.f.); heat: 41 °C, 3.5-min duration applied 5 min a.f., cold: 9°C, 30-min duration applied 7 min a.f. In a directly comparable trial in which the eggs of eight different females were separately exposed to the optimum shocks listed above, individual triploid yields were more variable following cold shocks and mean triploid yields were, therefore, higher following pressure and heat shock. These and other results obtained are presented and the light they shed on the timing of the second meiotic division in this species is discussed.  相似文献   
4.
Summary The most widely used technique of leaf water potential measurements is with the Scholander pressure chamber. Representative leaf water potential values require many determinations on individual leaves and this can be time consuming in large fields or experiments with multiple treatments. This paper describes a method of obtaining a mean value more rapidly, by using two leaves in the pressure chamber at the same time, but recording the end point of each leaf separately.  相似文献   
5.
By use of the pressure-clamp technique, the hydraulic conductivity of the brackish-water alga Lamprothamnium was found to be 5·10-6 cm s-1 bar-1. The dimensions of the internodes are so small that it is possible, for the first time, to measure a complete volume relaxation upon clamping the turgor pressure to a preset value by a feedback control of the pressure probe. As theoretically predicted, the values of the hydraulic conductivity obtained from the initial slope of the volume relaxation induced by the pressure clamp are in agreement (within experimental error) with those obtained from the half-time of the relaxation process. The cell volume also obtained from the analysis of the volume relaxation is the osmotically effective cell volume and is therefore slightly smaller than the value obtained by taking the dimensions of the cell including the cell wall.Abbreviations and symbols Lp hydraulic conductivity - P turgor pressure - Sv initial slope of volume relaxion - T1/2 half-time of volume relaxation Dedicated to Professor Dr. H. Ziegler on the occasion of his 60th birthday  相似文献   
6.
Determination of the pressure in the water-conducting vessels of intactNicotiana rustica L. plants showed that the pressure probe technique gave less-negative values than the Scholander-bomb method. Even though absolute values of the order of −0.1 MPa could be directly recorded in the xylem by means of the pressure probe, pressures between zero and atmospheric were also frequently found. The data obtained by the pressure probe for excised leaves showed that the Scholander bomb apparently did not read the actual tension in the xylem vessles ofNicotiana plants. The possibility that the pressure probe gave false readings was excluded by several experimental controls. In addition, cavitation and leaks either during the insertion of the microcapillary of the pressure probe, or else during the measurements were easily recognized when they occurred because of the sudden increase of the absolute xylem tension to that of water vapour or to atmospheric, respectively. Tension values of the same order could also be measured by means of the pressure probe in the xylem vessels of pieces of stem cut from leaves and roots under water and clamped at both ends. The magnitude of the absolute tension depended on the osmolarity of the bathing solution which was adjusted by addition of appropriate concentrations of polyethylene glycol. Partial and uniform pressurisation of plant tissues or organs, or of entire plants (by means of the Scholander bomb or of a hyperbaric chamber, respectively) and simultaneous recording of the xylem tension using the pressure probe showed that a 1∶1 response in xylem pressure only occurred under a few circumstances. A 1∶1 response required that the xylem vessels were in direct contact with an external water reservoir and/or that the tissue was (pre-)infiltrated with water. Corresponding pressure-probe measurements in isolated vascular bundles ofPlantago major L. orP. lanceolata L. plants attached to a Hepp-type osmometer indicated that the magnitude of the tension in the xylem vessels was determined by the external osmotic pressure of the reservoir. These and other experiments, as well as analysis of the data using classical thermodynamics, indicated that the turgor and the internal osmotic pressure of the accessory cells along the xylem vessels play an important role in the maintenance of a constant xylem tension. This conclusion is consistent with the cohesion theory. In agreement with the literature (P.E. Weatherley, 1976, Philos. Trans. R. Soc. London Ser. B23, 435–444; 1982, Encyclopedia of plant physiology, vol. 12B, 79-109), it was found that the tension in the xylem of intact plants under normal and elevated ambient pressure (as measured with the pressure probe) under quasi-stationary conditions was independent of the transpiration rate over a large range, indicating that the conductance of the flow path must be flow-dependent.  相似文献   
7.
水稻伸长生长的数学模型   总被引:3,自引:1,他引:2  
水稻地上部诸器官的伸长生长,可以分为3个阶段和两个过渡期.器官在前期的凹型曲线生长为加速生长(定为第1阶段),中期的直线生长为等速生长(第2阶段),后期的凸型曲线生长为减速生长(第3阶段);每两个阶段临界处均存在特殊的生长过程,前面的定为第1过渡期,做变加速生长,后面的定为第2过渡期,做变减速生长.组成器官的各个细胞的伸长生长,也可以分为前期凹型曲线阶段、中期的直线阶段以及这两个阶段临界处的过渡期.运用类比原理推断;细胞在凹型曲线阶段,其原生质的膨压大于壁压,而且这两个压差始终维持稳定,这就使细胞做等加速生长;细胞经过过渡期的变加速生长过渡到直线生长阶段,在这个阶段中,膨压大小与壁压相等,这就使细胞以过渡期最末的生长速度做等速生长;最后壁压大于膨压,而且这两个相差压会阻止细胞的“惯性”生长直至停止生长,其结果产生减速生长.  相似文献   
8.
The rate of Hg2+-assisted chloride release from several mer-[CrCl(diamine)(triamine)]2+ complexes has been measured as a function of pressure, Hg2+ concentration and temperature. The calculated activation volumes are independent of [Hg2+] and temperature and kinetic parametes 104 kHg (25 °c) (M−1 s−1), ΔH (kJ mol−1), ΔS (J K−1 mol−1), ΔV (cc mol−1) are: (en)(dpt): 6.44. 75.5, −52, −5.0; (ibn)(dpt): 5.81, 89.5, −6, −0.03; (Me2tn)(dpt): 22.2, 84.9, −11, −0.5; (tn)(dpt): 29.1, 87, −1, +0.3; (en)(2,3-tri): 1.94, 87.0, −24, −5.7; (en)(Medpt): 0.417, 94.6, −11, −0.8; (tn)(Medpt): 9.14, 98.3, +26, +1.8.  相似文献   
9.
Using lettuce (Lactuca sativa L., cv. Grand Rapids) embryos in osmotica, we have demonstrated that when the growth rates of the embryonic axes of seeds treated with red (R) or far-red (FR) light are equalized, the axes of R-treated seeds develop a 3.4-bar decrease in water potential (paper No. III).As axial growth begins, reserve protein and phytin decrease rapidly, concomitant with increases in reducing sugars, -amino nitrogen, and inorganic and esterified soluble phosphates. However, no differences between the axes of R-and FR-treated seeds are found with respect to the changes in these compounds, indicating that these changes arise as a result of growth and are not under immediate phytochrome control. Little change in the total lipid content is found in either treatment. The axes of FR-treated seeds hydrolyze endogenous sucrose at a greater rate thant those of R-treated seeds. Axes of R-treated seeds accumulate K+ and Na+ to a greater extent than those of FR-treated seeds. When potassium salts are added to the incubation medium, R induces increased K+ uptake by the axis and greater medium acidification by the axis. Malate and other organic acids and acidic amino acids increase at equal rates in both treatments, indicating that inorganic anions may also be taken up to balance the ionic charges. The results are compatible with the assumption that changes in the osmotic and pressure potentials of the embryonic axes of R-treated seeds are the result of a phytochrome-stimulated proton pump which, in whole dormant seeds, would initiate water-potential changes allowing the embryos to overcome the mechanical restraint of the surrounding seed layers, resulting in germination.Abbreviations FR far-red light - PEG polyethylene glyeol 4000 - Pfr far-red-absorbing form of phytochrome - R red light III=Carpita et al. 1979  相似文献   
10.
The turgor pressure and water relation parameters were determined in single photoautotrophically grown suspension cells and in individual cells of intact leaves of Chenopodium rubrum using the miniaturized pressure probe. The stationary turgor pressure in suspension-cultured cells was in the range of betwen 3 and 5 bar. From the turgor pressure relaxation process, induced either hydrostatically (by means of the pressure probe) or osmotically, the halftime of water exchange was estimated to be 20±10 s. No polarity was observed for both ex- and endosmotic water flow. The volumetric elastic modulus, , determined from measurements of turgor pressure changes, and the corresponding changes in the fractional cell volume was determined to be in the range of between 20 and 50 bar. increases with increasing turgor pressure as observed for other higher plant and algal cells. The hydraulic conductivity, Lp, is calculated to be about 0,5–2·10–6 cm s–1 bar–1. Similar results were obtained for individual leaf cells of Ch. rubrum. Suspension cells immobilized in a cross-linked matrix of alginate (6 to 8% w/w) revealed the same values for the half-time of water exchange and for the hydraulic conductivity, Lp, provided that the turgor pressure relaxation process was generated hydrostatically by means of the pressure probe. Thus, it can be concluded that the unstirred layer from the immobilized matrix has no effect on the calculation of Lp from the turgor pressure relaxation process, using the water transport equation derived for a single cell surrounded by a large external volume. By analogy, this also holds true for Lp-values derived from turgor pressure changes generated by the pressure probe in a single cell within the leaf tissue. The fair similarity between the Lp-values measured in mesophyll cells in situ and mesophyll-like suspension cells suggests that the water transport relations of a cell within a leaf are not fundamentally different from those measured in a single cell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号