首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2014年   1篇
  2013年   3篇
  2009年   1篇
  2008年   4篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1993年   1篇
  1992年   1篇
  1983年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
1.
The adsorption characteristics of glutathione S-transferases (GST) genetically fused with polystyrene (PS)-binding peptides (PS-tags) on PS plates with increase in hydrophilicity were studied to clarify the mechanisms of the specific interaction between the PS-tag-fused protein and PS plates. GST fused with the PS-tag PS19 (RAFIASRRIKRP) preferentially interacted with hydrophilic PS plates, even in the presence of high concentrations of competitors such as Tween 20 and BSA. Both basic and aliphatic amino acids in the PS-tags were involved in the specific interaction of PS-tags with the surface of the hydrophilic PS plate. Genetic fusion of the PS19 variants, PS19-4 (RAIARRIRR) and PS19-6 (RIIIRRIRR), further improved the immobilization yield of GST in the presence of a high concentration of the competitor BSA (50 mg/mL). The PS19-6 peptide specifically interacted with the surfaces of various hydrophilic PS plates, especially in the presence of Tween 20. Higher remaining activity was detected on all of the hydrophilic PS plates immobilized with GST-PS19-6 in comparison with those with wild-type GST and GST-PS19, and the remaining activity was further increased by the addition of Tween 20 in the adsorption state. The PS19-6 peptide developed in this study is therefore very useful as an affinity tag that can immobilize a target protein directly onto various hydrophilic PS supports with high remaining activity.  相似文献   
2.
Highly efficient protein immobilization is extremely crucial for solid-phase immunoassays. We present a strategy for oriented immobilization of functionally intact immunoglobulin G (IgG) on a polystyrene microtiter plate via iminodiacetic acid (IDA)–Ni2+ and ZZ–His protein interaction. We immobilized a ZZ–EAP (Escherichia coli alkaline phosphatase)–His fusion protein, which exhibits Fc binding, His tag, and intrinsic AP activities, and analyzed it against the interaction between rabbit IgG anti-horseradish peroxidase (anti-HRP) and its binding partner HRP to investigate the specificity and efficacy of this method. We compared the IDA–Ni2+–(ZZ–His) method with ZZ–EAP random immobilization using sandwich enzyme-linked immunosorbent assay, and the results showed that the former method had an enhanced signal, 10-fold higher sensitivity, and a wider linear range. Thus, the proposed method allows a broad range of oriented immobilized functionally intact IgG antibodies on polystyrene plates using only one type of IDA–Ni2+ chelate surface because the ZZ protein can bind to the Fc region of various IgGs.  相似文献   
3.
The biodegradation of plastics and wood with different susceptibility to fungal attack have in this study been compared in order to show the biodegradability in relation to the properties of plastic and solid wood. Wood blocks of Scots pine and English Oak were treated with biodegradable aliphatic polyester, polycaprolactone, and a non-biodegradable aromatic thermoplastic, polystyrene. The plastics were applied to the wood samples dissolved in an organic solvent and thereafter the treated wood samples were exposed to brown rot decay (Postia placenta) in an agar plate test for 8 weeks. The polycaprolactone treatments did not result in wood protection, whereas polystyrene treatments provided a protection from fungal attack. Both plastics are transparent and after treatment the solid wood blocks retained their natural wood appearance with a somewhat darker shinier surface.

Scientific relevance

Usually commercial wood-plastic composites are made using wood derived lignocellulose-fibers melt-blended in a screw extruder with a plastic matrix, and then the resulting material is mainly a plastic (in terms of properties and appearance) which contain some lignocellulose. We have instead used solid wood to which we have added transparent plastics, which preserve the unique and precious esthetic value of natural wood. This study describes the biodegradation of two (a more and a less resistant) wood species in combination with a biodegradable and a non-biodegradable plastic. The purpose was to study any synergetic effect in the biodegradation property between solid wood and plastic since there is a socio-environmental desire to use biodegradable plastics of renewable raw material for e.g. composite material. We show that both the wood and the plastic influence the biodegradation, for example by using an easily degraded European wood specie in combination with a biodegradable plastic (polycarolactone) no protection of the wood is obtained, whereas a relative small amount recalcitrant plastic (polystyrene) can somewhat protect both Scots pine and Oak wood without significantly compromising their appearance.  相似文献   
4.
A method for calculating interaction parameters traditionally used in phase-equilibrium computations in low-molecular systems has been extended for the prediction of solvent activities of aromatic polymer solutions (polystyrene+methylcyclohexane). Using ethylbenzene as a model compound for the repeating unit of the polymer, the intermolecular interaction energies between the solvent molecule and the polymer were simulated. The semiempirical quantum chemical method AM1, and a method for sampling relevant internal orientations for a pair of molecules developed previously were used. Interaction energies are determined for three molecular pairs, the solvent and the model molecule, two solvent molecules and two model molecules, and used to calculated UNIQUAC interaction parameters, a ij and a ji . Using these parameters, the solvent activities of the polystyrene 90,000 amu+methylcyclohexane system, and the total vapor pressures of the methylcyclohexane+ethylbenzene system were calculated. The latter system was compared to experimental data, giving qualitative agreement. Figure Solvent activities for the methylcylcohexane(1)+polystyrene(2) system at 316 K. Parameters a ij (blue line) obtained with the AM1 method; parameters a ij (pink line) from VLE data for the ethylbenzene+methylcyclohexane system. The abscissa is the polymer weight fraction defined as 2(x 1)=(1–x 1)M 2/[x 1 M 1+(1–x 1)M 2], where x 1 is the solvent mole fraction and M i are the molecular weights of the components.An erratum to this article can be found at  相似文献   
5.
Sun H  Hu N 《Biophysical chemistry》2004,110(3):411-308
A novel hemoglobin (Hb)-coated polystyrene (PS) latex bead film was deposited on pyrolytic graphite (PG) electrode surface. In the first step, positively charged Hb molecules in pH 5.0 buffers were adsorbed on the surface of negatively charged, 500 nm diameter PS latex beads bearing sulfate groups by electrostatic interaction. The aqueous dispersion of Hb-coated PS particles was then deposited on the surface of PG electrodes and, after evaporation of the solvent, Hb-PS films were formed. The Hb-PS film electrodes exhibited a pair of well-defined, quasi-reversible cyclic voltammetric (CV) peaks at about −0.36 V vs. SCE in pH 7.0 buffers, characteristic of Hb heme Fe(III)/Fe(II) redox couples. Positions of Soret absorption band of Hb-PS films suggest that Hb retains its near-native structure in the films in its dry form and in solution at medium pH. The Hb in PS films was also acted as a catalyst to catalyze electrochemical reduction of various substrates such as trichloroacetic acid (TCA), nitrite, oxygen and hydrogen peroxide.  相似文献   
6.
Aiming at developing a novel affinity tag for site-specific immobilization of functional proteins onto polystyrene (PS) surfaces, Escherichia coli random peptide display library was screened for dodecapeptides exhibiting a high affinity toward PS plates. The selected peptides were commonly rich in hydrophobic amino acid residues and had two or three basic amino acid residues. Adsorption and desorption experiments for one of the selected peptide named PS1 (KGLRGWREMISL) showed that it was well and irreversibly adsorbed onto PS latex particles. To study its performance as an affinity tag, PS1 was genetically fused to a model enzyme, glutathione S-transferase (GST), in several manners, and the fusion enzymes were compared to the original GST in terms of the adsorption behavior onto the PS latex particles as well as the specific activities before and after the adsorption. The fusion GSTs in solution showed lower specific activities than the original one, and their adsorption behaviors were also altered. In particular, the fusion of PS1 to the N-terminal region of GST resulted in severe losses both in the specific activity and in the adsorptive ability. However, two types of GSTs fused with PS1 at the C-terminal region were well adsorbed onto the PS latex particles, and their specific activities after the adsorption were significantly higher than the original GST adsorbed on the PS latex particles. The fusion of PS1 to the C-terminal region of GST was thus shown to reduce the activity loss upon the adsorption onto the PS latex particles.  相似文献   
7.
【目的】塑料废物处理是世界环境难题,近期有研究报道黄粉虫可啮食聚苯乙烯泡沫塑料,肠道细菌可能在黄粉虫生物降解塑料的过程中起重要作用。本文以啮食聚苯乙烯泡沫塑料的黄粉虫幼虫(Tenebrio molitor)为材料,探究其肠道细菌的多样性和细菌群落组成。【方法】分别以聚苯乙烯泡沫塑料(聚苯乙烯组)和纸片(对照组)为唯一食物来源喂养黄粉虫幼虫,在90 d后采集粪便样品,对16S r RNA基因V3-V4区进行PCR扩增和高通量测序,并以PICRUSt进行肠道菌群的功能预测。【结果】饲喂期间,两组黄粉虫均正常存活,部分幼虫完成变态发育。泡沫塑料有明显的减重。样本测序共得到144 258条有效序列,179个OTU,共涉及10个门111个属。其中,聚苯乙烯组黄粉虫的肠道细菌在属水平高丰度的是Alcaligenes(35.9%)、Brevundimonas(12.3%)、Myroides(10.3%)。基于16S r RNA基因序列的功能预测表明,在聚苯乙烯组中,芳香类化合物的降解基因被明显富集。【结论】高通量测序揭示了啮食聚苯乙烯泡沫塑料的黄粉虫肠道菌群的多样性,这对从黄粉虫肠道中分离高效降解聚苯乙烯的细菌具有指导意义。  相似文献   
8.
We characterise the hydrophobic collapse of single polystyrene chains in water using molecular dynamics simulations. Specifically, we calculate the potential of mean force for the collapse of a single polystyrene chain in water using metadynamics, comparing the results between all atomistic with coarse-grained (CG) molecular simulation. We next explore the scaling behaviour of the collapsed globular shape at the minimum energy configuration, characterised by the radius of gyration, as a function of chain length. The exponent is close to one third, consistent with that predicted for a polymer chain in bad solvent. We also explore the scaling behaviour of the solvent accessible surface area (SASA) as a function of chain length, finding a similar exponent for both all atomistic and CG simulations. Furthermore, calculation of the local water density as a function of chain length near the minimum energy configuration suggests that intermediate chain lengths are more likely to form dewetted states, as compared to shorter or longer chain lengths.  相似文献   
9.
Polystyrene is a widely used plastic in many aspects of human life and in industries due to its useful characteristics of low cost, light weight, ease of manufacture, versatility, thermal efficiency, durability, and moisture resistance. However, polystyrene is very stable and extremely hard to degrade in the environment after disposal. Polystyrene can be used as a carbon source for microorganisms similar to many other hydrocarbons. The ability of microorganisms to use polystyrene as a carbon source has been recently established. However, the high molecular weight of polystyrene limits its use as a substrate for enzymatic reactions to take place. In this paper, we review studies on biodegradation of polystyrene to give an overview and direction for future studies.  相似文献   
10.
Nanosized plastics are an emerging concern in freshwater ecosystems, raising the question whether they put freshwater ecological processes at risk. Litter decomposition is a major ecological function in forested streams which is mainly driven by aquatic hyphomycetes. Here we investigated whether increasing concentrations (up to 102.4 mg/L) of nanosized polystyrene plastics (NPPs; 100nm) affect litter decomposition by five widely distributed species of aquatic hyphomycetes. Results showed that average litter decomposition decreased by 8% relative to the control when exposed to 102.4 mg/L NPPs. Aquatic hyphomycete species differed in their sensitivity to NPPs. The greatest inhibition of litter decomposition was found with Tetracladium marchalianum, where it dropped from 37 (control) to 16% (102.4 mg/L of NPP). Overall our study highlights the emerging risks and potential dangers of NPPs to freshwater ecosystem functioning. It also indicates that the impact of NPPs may be species specific.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号