首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   2篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2009年   2篇
  2007年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  1997年   3篇
  1972年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
2.
本文研究了不同强化饵料对匙吻鲟(Polyodon spathala)仔鱼生长和发育的影响,实验采用蛋黄或鱼油强化卤虫无节幼体或桡足幼体为饵料的共6个实验组,即未强化卤虫组、蛋黄强化卤虫组、鱼油强化卤虫组和未强化桡足幼体组、蛋黄强化桡足幼体组、鱼油强化桡足幼体组,对匙吻鲟仔鱼开口驯化14 d,动态监测和统计不同饵料组匙吻鲟仔鱼的生长和存活情况,并对消化酶活性进行相关性分析。体重、体长、日增重和存活率4个指标,均为桡足幼体组显著高于卤虫组(P0.05),尤其在存活率方面,鱼油强化卤虫组不足50%,而未强化桡足幼体组最高可达86.59%;不同饵料组生长模式方程都获得较好的拟合,从体重和体长生长曲线看,桡足幼体组从饲喂8天起体长和体重进入快速生长期,而卤虫组生长一直相对缓慢;胃蛋白酶活性在未强化桡足幼体组显著高于其他组(P0.05),不同饵料组对仔鱼的淀粉酶活性无显著性影响。结果表明,在匙吻鲟仔鱼开口期以桡足幼体开口饵料驯化效果较好,特别是未强化桡足幼体组仔鱼的存活率高,鱼油强化桡足幼体组仔鱼生长速度较快,而以卤虫饲喂效果相对较差。  相似文献   
3.
匙吻鲟仔稚鱼消化酶发育的研究   总被引:3,自引:0,他引:3  
对出膜后0—53d匙吻鲟的酸性蛋白酶、碱性蛋白酶、α-淀粉酶、脂肪酶以及磷酸酶的活性变化进行了测定。匙吻鲟出膜后饲养于室内水泥培育池中,从第3天开始投喂枝角类,之后于第40天将试验鱼转移至池塘。试验材料为受精卵及出膜后第3、第6、第12、第20、第30、第40、第44、第47、第53天仔稚鱼样品。研究发现主要消化酶在出膜时或卵黄期即可检测出活力。碱性蛋白酶和酸性蛋白酶分别在出膜后3d(3DAH)和刚出膜时(0DAH)检测出活力。碱性蛋白酶活力在44DAH达到最大值[(1.96±0.09)U/fish],47DAH出现下降,但在53DAH开始上升,比活力在53DAH达到最大值[(8.84±0.59)U/mg protein]。酸性蛋白酶在44DAH达到最大值[(0.52±0.05)U/fish],比活力在6DAH出现第一个峰值[(2.08±0.09)U/mg protein],并在30DAH出现最小值[(0.83±0.06)U/mg protein]。试验期间碱性蛋白酶活力高于酸性蛋白酶。在12DAH—40DAH期间α-淀粉酶活力相对稳定,并在47DAH达到最大值[(0.42±0.03)U/fish],比活力在12DAH出现一个峰值[(1.18±0.12)U/mg protein],并于47DAH出现最大值[(1.94±0.16)U/mg protein]。发育早期脂肪酶活力较高,活力和比活力分别在30DAH[(0.20±0.02)U/fish]和6DAH[(2.28±0.22)U/mg protein]出现最大值。碱性磷酸酶活力变化趋势与比活力变化趋势相似,但是最大值分别出现在44DAH[(0.08±0.00)U/fish]和30DAH[(1.96±0.15)U/mg protein]。酸性磷酸酶活力在3DAH出现一个峰值[(0.01±0.00)U/fish],之后显著升高,并在44DAH达到最大值[(0.05±0.00)U/fish],其比活分别在30DAH[(1.19±0.10)U/mg protein]和44DAH[(1.10±0.08)U/mg protein]出现两个峰值。结果表明,蛋白酶、α-淀粉酶和磷酸酶随个体发育活力增加,碱性蛋白酶在个体发育早期对蛋白质的消化具有重要作用。养殖环境发生改变时,酸性蛋白酶、α-淀粉酶、碱性磷酸酶和酸性磷酸酶活力在生长减慢时增加,生长加快时降低,而脂肪酶活力则维持稳定。  相似文献   
4.
A novel electrosensory function is presented for the large, plankton-feeding, freshwater paddlefish, Polyodon spathula, along with a hypothesis which accounts for the distinctive, elongated rostrum of this unusual fish. Behavioural experiments conducted in the ''dark'' (under infrared illumination), to eliminate vision, show that paddlefish efficiently capture planktonic prey to distances up to 80–90 mm. They make feeding strikes at dipole electrodes in response to weak low-frequency electrical currents. Fish also avoid metal obstacles placed in the water, again in the dark. Electrophysiological experiments confirm that the Lorenzinian ampullae of paddlefish are sensitive to weak, low-frequency electrical signals, and demonstrate unequivocally that they respond to the very small electrical signals generated by their natural zooplankton prey (Daphnia sp.). We propose that the rostrum constitutes the biological equivalent of an electrical antenna, enabling the fish to accurately detect and capture its planktonic food in turbid river environments where vision is severely limited. The electrical sensitivity of paddlefish to metallic substrates may interfere with their migrations through locks and dams.  相似文献   
5.
Phylogeny of the Acipenseriformes: cytogenetic and molecular approaches   总被引:16,自引:0,他引:16  
The review of the data on karyology and DNA content in Acipenseriformes shows that both extant families, the Polyodontidae and Acipenseridae, originated from a tetraploid ancestor which probably had a karyotype consisting of 120 macro- and microchromosomes and DNA content of about 3.2–3.8 pg per nucleus. The tetraploidization of the presumed 60-chromosome ancestor seems to have occurred at an early time of evolution of the group. The divergence of the Acipenseridae into Scaphirhyninae and Acipenserinae occurred without polyploidization. Within the genus Acipenser, polyploidization was one of the main genetic mechanisms of speciation by which 8n and 16n-ploid species were formed. Individual gene trees constructed for sequenced partial fragments of the 18S rRNA (230 base pairs, bp), 12S rRNA (185 bp), 16S rRNA (316 bp), and cytochrome b (270 bp) genes of two Eurasian (A. baerii and A. ruthenus) and two American (A. transmontanus and A. medirostris) species of Acipenser, Huso dauricus, Pseudoscaphirhynchus kaufmanni, Scaphirhynchus albus, and Polyodon spathula showed a low level of resolution; the analysis of a combined set of data for the four genes, however, gave better resolution. Our phylogeny based on molecular analysis had two major departures from existing morphological hypotheses: Huso dauricus is a sister-species to Acipenser instead of being basal to all acipenseriforms, and Scaphirhynchus and Pseudoscaphirhynchus do not form a monophyletic group. The phylogenetic tree constructed for the cytochrome b gene fragments (with inclusion of 7 additional species of Acipenser) supported the conclusion that octoploid species appeared at least three times within Acipenser.  相似文献   
6.
Sturgeon and paddlefish populations worldwide have declined because of anthropogenic influences. The structure and magnitude of genetic diversity of natural populations serves to buffer these fishes against environmental variation and should be maintained. Modern molecular biological techniques provide the ability to sensitively characterize and quantify the extent of genetic variation in natural populations. We provide a summary of those problems in sturgeon population biology that are amenable to investigation with DNA approaches, and their applications to date. These have included genetic identification and discrimination of taxa, identification of hybrids, stock identification, mixed-stock analysis, and estimation of gene flow and homing fidelity. To date, almost all studies have been restricted to North American fauna. Improvements to these technologies, including nondestructive sampling, should permit more widespread application of molecular approaches to problems of acipenseriform conservation. We suggest that the use of more sensitive molecular tools such as analyses of hypervariable repetitive and non-coding single copy nuclear DNA may assist management even in those taxa which exhibit overall low levels of genetic diversity.  相似文献   
7.
8.
In Polyodon spathula, the pectoral fin radials, with the exception of the metapterygium, are derived from the decomposition of a single continuous cartilage fin plate that is continuous with the scapulocoracoid. This cartilage sheet develops two interior splits to form three precursor pieces, and these decompose in a predictable way to generate the propterygium and radials. The metapterygium is an extension of the scapulocoracoid that segments off of it during early development. To our knowledge, this has not been reported for acipenserids or other basal actinopterygians. In teleosts, the proximal radials also develop from the "break up" of an initially continuous paddle-like sheet of cartilage along the posterior edge of the scapulocoracoid, and in Polypterus and sharks a similar pattern holds. Thus, the pattern observed in Polyodon may represent the basal developmental condition for the gnathostome pectoral fin. The process underlying development of the superficially similar cartilages of the pelvic and pectoral fins is different. In the pectoral fin, the metapterygium is segmented off of the scapulocoracoid and other radials form from the decomposition of the cartilage plate. In contrast, individual rod-like basipterygial elements form in a close one-to-one correspondence with the middle radials of the pelvic fin, but later fuse to form an anterior element that is branched in appearance. To evaluate further claims of similarity among the pectoral and pelvic fin elements of various fishes, the course of the development of these structures must be observed. The pectoral fin and girdle in Polyodon ossifies in a different sequence than that proposed as ancestral (and highly conserved) for actinopterygians: the supracleithrum ossifies significantly before the cleithrum. The later ossification of the cleithrum in Polyodon may be related to the primary use of the caudal fin vs. the pectoral fins in their locomotion.  相似文献   
9.
The pectoral fins of Acipenseriformes possess endoskeletons with elements homologous to both the fin radials of teleosts and the limb bones of tetrapods. Here we present a study of pectoral fin development in the North American paddlefish, Polyodon spathula, and the white sturgeon, Acipenser transmontanus, which reveals that aspects of both teleost and tetrapod endoskeletal patterning mechanisms are present in Acipenseriformes. Those elements considered homologous to teleost radials, the propterygium and the mesopterygial radials, form via subdivision of an initially chondrogenic plate of mesenchymal cells called the endoskeletal disc. In Acipenseriformes, elements homologous to the sarcopterygian metapterygium develop separately from the endoskeletal disc as an outgrowth of the endoskeletal shoulder girdle that extends into the posterior margin of the finbud. As in tetrapods, the elongating metapterygium and the metapterygial radials form in a proximal to distal order as discrete condensations from initially nonchondrogenic mesenchyme. Patterns of variation seen in the Acipenseriform fin also correlate with putative homology: all variants from the "normal" fin bauplan involved the metapterygium and the metapterygial radials alone. The primary factor distinguishing Polyodon and Acipenser fin development from each other is the composition of the endoskeletal extracellular matrix. Proteoglycans (visualized with Alcian Blue) and Type II collagen (visualized by immunohistochemistry) are secreted in different places within the mesenchymal anlage of the fin elements and girdle and at different developmental times. Acipenseriform pectoral fins differ from the fins of teleosts in the relative contribution of the endoskeleton and dermal rays. The fins of Polyodon and Acipenser possess elaborate endoskeletons overlapped along their distal margins by dermal lepidotrichia. In contrast, teleost fins generally possess relatively small endoskeletal radials that articulate with the dermal fin skeleton terminally, with little or no proximodistal overlap.  相似文献   
10.
We present evidence that at least some parasitic-phase silver lampreys, Ichthyomyzon unicuspis, and chestnut lampreys, I. castaneus, remain attached to host fish during the winter. Lake sturgeon, Acipenser fulvescens, harvested through the ice by spearfishers in the Lake Winnebago system in Wisconsin may bear silver lampreys or fresh lamprey wounds, and sturgeon with lamprey marks were significantly larger than sturgeon without them. Silver lampreys collected on paddlefish, Polyodon spathula, in the Wisconsin River in March were not significantly longer than silver lampreys collected previously in late October, but they were significantly heavier, an indication that they were feeding to at least some extent during the intervening period. Other large fish species, including northern pike, Esox lucius, and flathead catfish, Pylodictus olivaris, have been collected or observed during the winter with silver or chestnut lampreys attached. Although energy and nutrient intake by parasitic lampreys may be reduced during the winter, lampreys attached to hosts may also benefit from the hosts' mobility and ability to avoid potentially harmful situations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号