首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   9篇
  国内免费   10篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   5篇
  2017年   5篇
  2016年   5篇
  2015年   3篇
  2014年   7篇
  2013年   6篇
  2012年   7篇
  2011年   20篇
  2010年   6篇
  2009年   18篇
  2008年   14篇
  2007年   16篇
  2006年   18篇
  2005年   9篇
  2004年   12篇
  2003年   10篇
  2002年   7篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1996年   1篇
排序方式: 共有185条查询结果,搜索用时 15 毫秒
1.
In this study, distribution of metal accumulation and their biological changes of Indian mustard plants (Brassica nigra L.) grown in soil irrigated with different concentration of rayon grade paper effluent (RGPE, 25%, 50%, 75%, 100%, v/v) were studied. A pronounced effect was recorded at 50% (v/v) RGPE on germination of seeds, amylase activity and other growth parameters in Indian mustard plants. An increase in the chlorophyll and protein contents was also recorded at <50% (v/v) RGPE followed by a decrease at higher concentrations of RGPE (>75%). A significant increase lipid peroxidation was recorded, which was evidenced by the increased malondialdehyde (MDA) content in shoot, leaves and seeds in tested plant at all the concentrations of RGPE. This Indian mustard plants (Brassica nigra L.) are well adapted for tolerance of significant amount of heavy metals due to increased level of antioxidants (cysteine and ascorbic acid) in root shoot and leaves of treated plants at all concentration of RGPE. Moreover, it is also important that RGPE should be treated to bring down the metal concentration well within the prescribed limit prior to use in agricultural soil for ferti-irrigation.  相似文献   
2.
This paper reviews the various factors, coefficients and indexes developed to evaluate terrestrial plant performance in respect to phytoremediation.A brief list of indexes includes the Accumulation factor, Bioabsorption coefficient, Bioaccumulation coefficient, Bioaccumulation factor, Bioconcentration, Bioconcentration coefficient, Bioconcentration factor, Biological absorption coefficient, Biological accumulation coefficient, Biological concentration factor, Biological transfer coefficient, Concentration factor, Enrichment coefficient, Enrichment factor, Extraction coefficient, Index of bioaccumulation, Mobility index, Shoot accumulation factor, Soil host transfer factor, Soil-plant transfer coefficient, Soil-plant transfer factor, Transfer factor and Translocation factor.These indexes represent the result of a ratio calculation between element concentrations in plant parts to that of substrata. In other cases indexes arise from the ratio calculation of element concentrations in two distinct plant parts.In the literature different terms have been attributed to the same ratio and this often represents an overlap in terminology. On the other hand the same term corresponds to several different ratios and this could create confusion and misinterpretation in data comparison.Furthermore, the evaluation of hyperaccumulation, phytostabilization or phytoextraction of plant species is not always performed in the same way. Different plant parts are considered as well as different extraction procedures for both plant and substrata element assessment. As a consequence, a direct comparison between obtained data is not always reliable and possible.In this paper the various available indexes are reviewed, highlighting both the similarity and differences between them with the aim of helping the community in choosing the appropriate term for both data evaluation and comparison. In this author’s opinion there is no need of new terms to define indexes. I would stress the need for conformity to the original definitions and criteria.  相似文献   
3.
Phytoremediation of Pb contaminated soil with polymer-coated EDTA   总被引:1,自引:0,他引:1  
EDTA-assisted phytoextraction of lead (Pb) has been developed, but concerns have arisen due to the possibility of leaching of both Pb and EDTA to ground water caused by uncontrolled release. We developed five types of controlled-release EDTA (polymer-coated EDTA) by coating the EDTA with a polyolefin polymer. A test of the release rate showed that the duration for the release of 75% of total EDTA ranged from 3 to 210 days. A pot experiment was conducted to compare the effect of these polymer-coated EDTA and non-coated EDTA on the concentrations of Pb and EDTA in soil solution, and Pb accumulation in sorghum (Sorghum bicolor L. cv. EARLY SUMAC) in a Pb-contaminated soil. One of the polymer-coated EDTAs, C-EDTA-4, with a release period of 80 days proved to be the best in decreasing Pb and EDTA concentrations in soil solution, and increasing Pb accumulation in sorghum shoots compared to the direct application of EDTA. Our results suggest that polymer-coated EDTA has a potential for phytoextraction of Pb with a reduced environmental risk.  相似文献   
4.
某冶炼厂周围8种植物对重金属的吸收与富集作用   总被引:37,自引:3,他引:34  
采用野外采样系统分析法,研究了沈阳冶炼厂的8种植物对重金属(Pb、Zn、Cu和Cd)的吸收与富集作用以及可能的耐性机制.结果表明,植物对重金属的吸收和富集,因植物种类、部位及重金属种类而不同.茼麻(Abutilon theophrasti)对Pb的吸收和富集能力较强,小白酒花(Conyza canadensis)、三裂叶豚草(Ambrosia trifida)、酸模叶蓼(Polygonum lapathifolium)、茼麻、龙葵(Solanum nigrum)、绿珠藜(Chenopodium acuminatum)和菊芋(Helianthus tuberosus)对Zn的吸收和富集效果较好,绿珠藜和茼麻对Cu的吸收和富集能力较强,龙葵、绿珠藜、茼麻、酸模叶蓼和小白酒花对Cd的吸收和富集能力较强.这些植物向地上部转移某些重金属的能力很强,转移系数大于1,可用于植物提取方式的污染土壤修复.其他转移系数小于1的植物,适合于重金属污染土壤的植物稳定.  相似文献   
5.
土壤有机污染植物修复的机理与影响因素   总被引:15,自引:1,他引:14  
在综述大量国内外文献的基础上,分析了土壤有机污染植物修复的机理,重点介绍了国内外在植物吸收转运、植物根际降解和植物修复模型的研究进展。同时,从污染物的物理化学性质、植物种类、土壤性质、共存有机物和气象条件5个方面分析了影响土壤有机污染植物修复的主要因素,并展望了该领域的研究方向:深化植物修复机理,完善植物修复模型。加强植物-微生物协同修复的机理研究和技术应用,利用表面活性剂提高植物修复效率,加强复合有机污染植物修复研究。  相似文献   
6.
7.
 重金属污染是全球面临的亟待解决的生态问题。利用植物对重金属的富集作用来清除环境重金属污染即植物修复已成为重要的环境生物技术之一。这一技术的长远发展有赖于在重金属富集或耐受中起关键作用的基因的克隆和应用。植物络合素是植物体内一类重要的对重金属起螯合作用的多肽, 其合成受植物络合素合酶的催化。该文取得了如下研究结果:1)通过原子吸收测定表明,在大蒜(Allium sativum)的根部可以积累3 000 mg·kg-1的重金属镉;2)将克隆的大蒜植物络合素合酶基因(AsPCS)置于酵母表达启动子之下,构建酵母表达载体,并将其分别转入了因CUP1和acr3基因缺失而对重金属镉和砷敏感的酵母突变体菌株后,发现来自大蒜的AsPCS基因的表达使酵母CUP1缺失菌株对镉的耐受性提高了4倍, acr3缺失菌株对砷的耐受性提高了两倍;3)表达AsPCS基因酵母的生长模式证实了AsPCS基因的表达是酵母对重金属耐受性提高的原因。这些结果暗示, 大蒜植物络合素合酶基因在大蒜对重金属的抗性及大蒜根部对镉的积累中起关键作用,可作为重要的基因元件应用到修复污染的植物基因工程中。  相似文献   
8.
The comprehension of metal homeostasis in plants requires the identification of molecular markers linked to stress tolerance. Proteomic changes in leaves and cambial zone of Populus tremula×P. alba (717‐1B4 genotype) were analyzed after 61 days of exposure to cadmium (Cd) 360 mg/kg soil dry weight in pot‐soil cultures. The treatment led to an acute Cd stress with a reduction of growth and photosynthesis. Cd stress induced changes in the display of 120 spots for leaf tissue and 153 spots for the cambial zone. It involved a reduced photosynthesis, resulting in a profound reorganisation of carbon and carbohydrate metabolisms in both tissues. Cambial cells underwent stress from the Cd actually present inside the tissue but also a deprivation of photosynthates caused by leaf stress. An important tissue specificity of the response was observed, according to the differences in cell structures and functions.  相似文献   
9.
The present study was carried out in natural stands of Typha domingensis in Lake Burullus, Egypt, to investigate (1) nutrient dynamics and heavy metals accumulation in its organs, (2) the phytoextractive potential of its organs and (3) the amount of nutrients and heavy metals released back into the water after decomposition of the dead tissues. Nitrogen concentrations were higher in the shoot than in the root and rhizome, while P, Ca, Cu, Fe, Zn and ash concentrations were higher in the root than in the rhizome and shoot. Significant differences in the concentrations of Mg, Cd, Cu and ash were assessed during the growing season of T. domingensis. The content of most nutrients and heavy metals in the shoot increased rapidly during the early growing season in February, reached maximal values in July and then decreased again. The nutrient and heavy metal contents in the below-ground portion of the plant showed an opposite trend compared to the shoot; they decreased sharply during the spring, when they were translocated, supporting the heterotrophic phase of shoot growth. However, they increased slightly from July to September and then decreased again. The transfer factors of all nutrients and heavy metals from the sediment to the below-ground organs were greater than unity. The higher translocation ratio of N in T. domingensis shoots makes it suitable for N phytoextraction from water and sediment, while the lower translocation ratios for Cd, Cu, Fe, Pb and Zn make it suitable for metal ion phytostabilisation. The dead shoot biomass of the stands at the end of 2010 amounted to 1950 g DM m−2, when the seasonal decomposition process began. With a decay rate of 0.0049 day−1, 1624 g DM m−2 is decomposed in the lake in a year. This is equivalent to releasing the following nutrient and heavy metals into the surrounding water (in g m−2): 23.4 N, 0.8 P, 19.2 Ca, 1.8 Mg, 5.6 Na, 32.8 K, 0.01 Cd, 0.01 Cu, 0.84 Fe, 0.12 Pb and 0.03 Zn.  相似文献   
10.
Revegetation with metal tolerant plants for management of fly ash deposits is an important environmental perspective nowadays. Growth performance, photosynthesis, and antioxidant defense of lemongrass (Cymbopogon citratus (D.C.) Stapf.) were evaluated under various combination of fly ash amended with garden soil in order to assess its fly ash tolerance potential. Under low level of fly ash (25%) amended soil, the plant growth parameters such as shoot, root, and total plant biomass as well as metal tolerance index were increased compared to the control plants grown on garden soil, followed by decline under higher concentration of fly ash (50%, 75% and 100%). In addition, leaf photosynthetic rate, stomatal conductance, and photosystem (PS) II activity were not significantly changed under low level of fly ash (25%) amended soil compared to the garden soil but these parameters were significantly decreased further with increase of fly ash concentrations. Furthermore, increase of activities of some antioxidant enzymes such as superoxide dismutase, ascorbate peroxidase, and guaiacol peroxidase over control were noticed in lemongrass under all fly ash treatments. Taken together, the study suggests that lemongrass can be used for phytoremediation of fly ash at 25% amended soil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号