首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7675篇
  免费   656篇
  国内免费   242篇
  2024年   17篇
  2023年   131篇
  2022年   129篇
  2021年   245篇
  2020年   235篇
  2019年   305篇
  2018年   260篇
  2017年   209篇
  2016年   217篇
  2015年   276篇
  2014年   418篇
  2013年   528篇
  2012年   237篇
  2011年   352篇
  2010年   262篇
  2009年   291篇
  2008年   361篇
  2007年   318篇
  2006年   348篇
  2005年   285篇
  2004年   295篇
  2003年   265篇
  2002年   243篇
  2001年   142篇
  2000年   148篇
  1999年   188篇
  1998年   149篇
  1997年   153篇
  1996年   93篇
  1995年   124篇
  1994年   125篇
  1993年   97篇
  1992年   124篇
  1991年   82篇
  1990年   73篇
  1989年   86篇
  1988年   70篇
  1987年   61篇
  1986年   59篇
  1985年   60篇
  1984年   85篇
  1983年   57篇
  1982年   63篇
  1981年   55篇
  1980年   60篇
  1979年   47篇
  1978年   37篇
  1977年   27篇
  1976年   21篇
  1972年   14篇
排序方式: 共有8573条查询结果,搜索用时 142 毫秒
1.
《Developmental cell》2021,56(21):2952-2965.e9
  1. Download : Download high-res image (167KB)
  2. Download : Download full-size image
  相似文献   
2.
Stability and procured instability characterize two opposing types of swimming, steady and maneuvering, respectively. Fins can be used to manipulate flow to adjust stability during swimming maneuvers either actively using muscle control or passively by structural control. The function of the dorsal fins during turning maneuvering in two shark species with different swimming modes is investigated here using musculoskeletal anatomy and muscle function. White‐spotted bamboo sharks are a benthic species that inhabits complex reef habitats and thus have high requirements for maneuverability. Spiny dogfish occupy a variety of coastal and continental shelf habitats and spend relatively more time cruising in open water. These species differ in dorsal fin morphology and fin position along the body. Bamboo sharks have a larger second dorsal fin area and proportionally more muscle insertion into both dorsal fins. The basal and radial pterygiophores are plate‐like structures in spiny dogfish and are nearly indistinguishable from one another. In contrast, bamboo sharks lack basal pterygiophores, while the radial pterygiophores form two rows of elongated rectangular elements that articulate with one another. The dorsal fin muscles are composed of a large muscle mass that extends over the ceratotrichia overlying the radials in spiny dogfish. However, in bamboo sharks, the muscle mass is divided into multiple distinct muscles that insert onto the ceratotrichia. During turning maneuvers, the dorsal fin muscles are active in both species with no differences in onset between fin sides. Spiny dogfish have longer burst durations on the outer fin side, which is consistent with opposing resistance to the medium. In bamboo sharks, bilateral activation of the dorsal in muscles could also be stiffening the fin throughout the turn. Thus, dogfish sharks passively stiffen the dorsal fin structurally and functionally, while bamboo sharks have more flexible dorsal fins, which result from a steady swimming trade off. J. Morphol. 274:1288–1298, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
3.
Human pancreatic stellate cells (HPSCs) are an essential stromal component and mediators of pancreatic ductal adenocarcinoma (PDAC) progression. Small extracellular vesicles (sEVs) are membrane-enclosed nanoparticles involved in cell-to-cell communications and are released from stromal cells within PDAC. A detailed comparison of sEVs from normal pancreatic stellate cells (HPaStec) and from PDAC-associated stellate cells (HPSCs) remains a gap in our current knowledge regarding stellate cells and PDAC. We hypothesized there would be differences in sEVs secretion and protein expression that might contribute to PDAC biology. To test this hypothesis, we isolated sEVs using ultracentrifugation followed by characterization by electron microscopy and Nanoparticle Tracking Analysis. We report here our initial observations. First, HPSC cells derived from PDAC tumors secrete a higher volume of sEVs when compared to normal pancreatic stellate cells (HPaStec). Although our data revealed that both normal and tumor-derived sEVs demonstrated no significant biological effect on cancer cells, we observed efficient uptake of sEVs by both normal and cancer epithelial cells. Additionally, intact membrane-associated proteins on sEVs were essential for efficient uptake. We then compared sEV proteins isolated from HPSCs and HPaStecs cells using liquid chromatography–tandem mass spectrometry. Most of the 1481 protein groups identified were shared with the exosome database, ExoCarta. Eighty-seven protein groups were differentially expressed (selected by 2-fold difference and adjusted p value ≤0.05) between HPSC and HPaStec sEVs. Of note, HPSC sEVs contained dramatically more CSE1L (chromosome segregation 1–like protein), a described marker of poor prognosis in patients with pancreatic cancer. Based on our results, we have demonstrated unique populations of sEVs originating from stromal cells with PDAC and suggest that these are significant to cancer biology. Further studies should be undertaken to gain a deeper understanding that could drive novel therapy.  相似文献   
4.
The growth-associated protein B-50 also termed GAP-43, F1, pp46, P-57 and neuromodulin is a nervous tissuespecific protein kinase C (PKC) substrate that is considered to play a major role in neurite formation, regeneration, and neuroplasticity. We describe the isolation of seven mouse monoclonal antibodies (Mabs) directed against B-50. The Mabs are produced against the bovine B-50, selected by ELISA for cross-reactivity with its human counterpart, and evaluated on Western blots in comparison with the well-characterized affinity-purified rabbit polyclonal antibodies to rat-B-50. The Western blots show that the Mabs NM1, NM4, and NM6 recognize specifically the B-50 of bovine, human, and rat brain extract and the purified PKC phosphorylated and unphosphorylated rat B-50 isoforms. The Mabs NM2 and NM3 cross-react with bovine B-50 immunoreactive c-kinase substrate (BICKS), a protein sharing a 17 amino acid sequence homology with B-50. Two Mabs are useful for the detection of B-50 immunoreactivity in formalin-fixed human and rat brain tissues. In human specimen of the hippocampus, a characteristic neuropil distribution of B-50 is detected by the Mabs. In human muscle, Mabs reveal B-50 in nerve bundles and in axons at motor end plates. Thus, these Mabs are useful in investigating the function and localization of the B-50 protein.  相似文献   
5.
《Developmental cell》2022,57(11):1383-1399.e7
  1. Download : Download high-res image (247KB)
  2. Download : Download full-size image
  相似文献   
6.
Abstract In the field, adult males of the grasshopper Phymateus morbillosus are able to fly for up to 1 min and cover up to c. 100 m, whereas females, although fully winged, are apparently unable to get airborne. Morphometric data indicate that the males are lighter, have longer wings, a higher ratio of flight muscles to body mass, and a lower wing load value than females. It was investigated whether this inability of females to fly is related to fuel storage, flight muscle enzymatic design and/or the presence and quantitative capacity of the endocrine system to mobilize fuels. In both sexes, readily available potential energy substrates are present in the haemolymph in similar concentrations, and the amount of glycogen in flight muscles and fat bodies does not differ significantly between males and females. Mass-specific activities of the enzymes GAPDH (glycolysis), HOAD (fatty acid oxidation) and MDH (citric acid cycle) in flight muscles are significantly lower in females compared with males, and mitochondria are less abundant in the flight muscles of females. There is no significant difference between the ability of the two sexes to oxidize various important substrates. Both sexes contain three adipokinetic peptides in their corpora cardiaca; the amount of each peptide in female grasshoppers is higher than in males.
Thus, despite some differences listed above, both sexes appear to have sufficient substrates and the necessary endocrine complement to engage in flight. It seems more likely, from the morphometric data above, that the chief reason for flightlessness is that P. morbillosus females cannot produce sufficient lift for flight; alternatively, the neuronal functioning associated with the flight muscles may be impaired in females.  相似文献   
7.
Abstract

The antioxidant effects of ellagic acid (EA) and hesperidin (HES) against skeletal muscle ischemia/reperfusion injury (I/R) were performed. Hindlimb ischemia has been induced by tourniquet occlusion for 2?h on left hindlimb. At the end of ischemia, the tourniquate has been removed and initiated reperfusion for 2?h. EA (100?mg/kg) has been applied orally before ischemia/reperfusion in the EA?+?I/R group. HES (100?mg/kg) has been given orally in the HES?+?I/R group. The left gastrocnemius muscle has been harvested and stored immediately at??80?°C until assessed for the levels of MDA and antioxidant enzymes activities. MDA level has statistically increased in I/R group (p?<?0.05) compared to other groups. The muscle tissue antioxidant enzymes activities were lower than the other groups in the I/R group (p?<?0.05). EA and HES treatments significantly reversed the damage level in I/R, also activity of tissue SOD increased in the EA?+?I/R and HES?+?I/R groups.  相似文献   
8.
Evaluation of the relationships between muscle structure and digging function in fossorial species is limited. Badgers and other fossorial specialists are expected to have massive forelimb muscles with long fascicles capable of substantial shortening for high power and applying high out‐force to the substrate. To explore this hypothesis, we quantified muscle architecture in the thoracic limb of the American badger (Taxidea taxus) and estimated the force, power, and joint torque of its intrinsic musculature in relation to the use of scratch‐digging behavior. Architectural properties measured were muscle mass, belly length, fascicle length, pennation angle, and physiological cross‐sectional area. Badgers possess hypertrophied shoulder flexors/humeral retractors, elbow extensors, and digital flexors. The triceps brachii is particularly massive and has long fascicles with little pennation, muscle architecture consistent with substantial shortening capability, and high power. A unique feature of badgers is that, in addition to elbow joint extension, two biarticular heads (long and medial) of the triceps are capable of applying high torques to the shoulder joint to facilitate retraction of the forelimb throughout the power stroke. The massive and complex digital flexors show relatively greater pennation and shorter fascicle lengths than the triceps brachii, as well as compartmentalization of muscle heads to accentuate both force production and range of shortening during flexion of the carpus and digits. Muscles of most functional groups exhibit some degree of specialization for high force production and are important for stabilizing the shoulder, elbow, and carpal joints against high limb forces generated during powerful digging motions. Overall, our findings support the hypothesis and indicate that forelimb muscle architecture is consistent with specializations for scratch‐digging. Quantified muscle properties in the American badger serve as a comparator to evaluate the range of diversity in muscle structure and contractile function that exists in mammals specialized for fossorial habits. J. Morphol. 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
9.
Muscle fine structure reflects ecotype in two nototheniids   总被引:3,自引:0,他引:3  
The fine structure of swimming (pectoral) and myotomal (axial) skeletal muscle and myocardium of two species of Antarctic nototheniid fishes were studied by electron microscopy, comparing the cryopelagic Pagothenia borchgrevinki and the benthic Trematomus bernacchii . Mean fibre size varied by a factor of four among muscles within each species and may have reflected the locomotory power available, being larger in pectoral oxidative (red) and axial glycolytic (white) muscle of P. borchgrevinki . Both species use labriform locomotion, and the more active P. borchgrevinki had a greater capillary supply, expressed as a capillary to fibre ratio, than T. bernacchii to both red (3·48 ± 0·36 v . 1·63 ± 0·14, mean ±  s . e .; P  < 0·01) and white (2·70 ± 0·20 v . 1·53 ± 0·18, mean ±  s . e .; P  < 0·01) regions of the pectoral musculature. The greater aerobic scope of P. borchgrevinki was strikingly demonstrated in the higher mitochondrial content of all skeletal muscle types sampled, and the ventricular myocardium (0·269 ± 0·011 v . 0·255 ± 0·012 mean ±  s . e .; P  < 0·05). Minor differences were found in other elements of fibre composition, with the exception of a five‐fold greater lipid content in pectoral red fibres of P. borchgrevinki (0·074 ± 0·014 mean ±  s . e .) v . T. bernacchii (0·010 ± 0·003; P  < 0·05). Differences in muscle fine structure among species clearly reflected differences in their ecotype.  相似文献   
10.
Résumé L'épithélium pharyngien d'Alcyonidium polyoum possède des cellules pourvues d'une très grande vacuole. L'incompressibilité du liquide vacuolaire permet un élargissement brusque de l'organe lors de la contraction du manchon musculaire strié qui enserre cette vacuole. Les fibres musculaires sont insérées sur le plasmalemme apical par des filaments unitifs. Le point d'attache est relié à la lame amorphe du cell-coat qui entoure les microvillosités par des fibrilles, réalisant probablement une liaison mécamique plus efficace. Le reticulum sarcoplasmique porte des ribosomes. Le cytoplasme apical renferme des vésicules de diverses catégories.
Some ultrastructural data about a myoepithelium: The pharynx of a bryozoan
Summary Pharyngeal cells of Alcyonidium polyoum (Bryozoa) are provided with very large vacuoles. Each vacuole is enveloped by a thin layer of striated muscle, whose contraction enlarges the organ. Filaments join the muscular elements to the apical plasmalemma. This point of muscular insertion is connected by fibrils with the amorphic lamina of cell-coat which surrounds the microvilli. Ribosomes are often found on dyads. Various vesicles are located in the apical cytoplasm.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号