首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   785篇
  免费   103篇
  国内免费   26篇
  2024年   2篇
  2023年   35篇
  2022年   27篇
  2021年   52篇
  2020年   74篇
  2019年   129篇
  2018年   58篇
  2017年   32篇
  2016年   33篇
  2015年   28篇
  2014年   57篇
  2013年   66篇
  2012年   30篇
  2011年   28篇
  2010年   33篇
  2009年   18篇
  2008年   24篇
  2007年   23篇
  2006年   24篇
  2005年   19篇
  2004年   16篇
  2003年   19篇
  2002年   19篇
  2001年   8篇
  2000年   1篇
  1999年   6篇
  1998年   6篇
  1997年   4篇
  1996年   6篇
  1995年   4篇
  1994年   5篇
  1993年   4篇
  1992年   5篇
  1991年   2篇
  1990年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   3篇
  1978年   1篇
  1977年   2篇
排序方式: 共有914条查询结果,搜索用时 328 毫秒
1.
Oxidative stress has been linked to the pathogenesis of diabetic nephropathy, the complication of diabetes in the kidney. NADPH oxidases of the Nox family, and in particular the homologue Nox4, are a major source of reactive oxygen species in the diabetic kidney and are critical mediators of redox signaling in glomerular and tubulointerstitial cells exposed to the diabetic milieu. Here, we present an overview of the current knowledge related to the understanding of the role of Nox enzymes in the processes that control mesangial cell, podocyte and tubulointerstitial cell injury induced by hyperglycemia and other predominant factors enhanced in the diabetic milieu, including the renin-angiotensin system and transforming growth factor-β. The nature of the upstream modulators of Nox enzymes as well as the downstream targets of the Nox NADPH oxidases implicated in the propagation of the redox processes that alter renal biology in diabetes will be highlighted.  相似文献   
2.
Onosma echioides Linn (Boraginaceae) is the most frequently used curative herb widely used for kidney obstruction, sciatic pain, and gout. The present study was designed to investigate the therapeutic effects of n-hexane bark extract of O. echioides (OE) L. root in vivo against Streptozotocin-induced diabetic neuropathy in SD rats. For in vivo activity, the experiment was categorized into five different groups (n = 5). Group-I was considered as nondiabetic/normal control (NC) treated with 0.5% carboxymethyl cellulose (CMC), Group II as diabetic control, Group-III, IV, and V served as diabetic treated with OE 50, OE 100, and pregabalin at a dose of 50, 100, and 10 mg/kg body weight, orally, respectively. Body weight, blood glucose, oral glucose tolerance test, behavioral studies (motor coordination test, thermal hyperalgesia, cold allodynia, locomotor activity, oxidative biomarkers (thio barbituric acid reactive substances [TBARS], superoxide dismutase [SOD], glutathione [GSH], and catalase), and histopathology of the sciatic nerve were performed. Treatment with OE showed a dose-dependent increase in neuroprotective activity by improving the myelination and decreasing the axonal swelling of nerve fibers. The verdicts of behavioral activities showed a remarkable effect on animals after the treatment of extract and standard drug pregabalin. In conclusion, our findings supported the traditional application of OE and explored its importance in the management of diabetic neuropathy. Additional clinical experiments may provide novel therapeutic drugs for diabetes and its complications.  相似文献   
3.
This study determined whether the beneficial effects of exercise training on the diabetic heart previously observed are associated with alterations in ventricular myosin heavy chain (MHC) isoform composition. Diabetes was induced in rats by i.v. streptozotocin. Trained rats were run on a treadmill for 60 min/day, 27 m/min, 10% grade. After 10 wks, ventricular MHC isoenzyme protein composition was analyzed for MHC composition using gel electrophoresis. -MHC and -MHC mRNA were determined by Northern and slot blot hybridization techniques. Both protein and mRNA analyses indicated that sedentary control rats exhibited a predominance of -MHC. Sedentary diabetics exhibited a shift to -MHC. Exercise trained diabetic rats showed a predominance of -MHC. The results indicate that treadmill exercise training of diabetic rat does not prevent the diabetes-induced shift in MHC composition towards the -MHC isoform, thus it is unlikely that the beneficial effects of exercise training on the diabetic heart, previously shown, are due to a normalization of the myosin isoform composition.  相似文献   
4.
The incorporation of [3H]myo-inositol into individual phosphoinositides and of [3H]glycerol into glycerolipids was determined in sciatic nerve obtained from normal and streptozotocin diabetic rats and incubated in vitro. The uptake of inositol into lipid was approximately linear with time. More than 80% of the label was present in phosphatidylinositol with the remainder divided about equally between phosphatidylinositol phosphate and phosphatidylinositol-4,5-bisphosphate. Labeling was unchanged 2 weeks after induction of diabetes, but was reduced by 32% after 20 weeks of the disease. Glycerol incorporation occurred primarily into phosphatidylcholine and triacylglycerol and was depressed up to 45% into major phosphoglycerides in nerves from both 2- and 20-week diabetic animals. Triacylglycerol labeling was also substantially decreased, and the reduction was comparable in intact and epineurium free nerve, suggesting that a metabolically active pool of this compound, which is sensitive to hyperglycemia and/or insulin deficiency, is located in or immediately adjacent to the nerve fibers. The considerable decline in incorporation of these lipid precursors in diabetic nerve may be related to impaired inositol transport and to decrease overall energy utilization by the tissue.  相似文献   
5.
Summary The administration of 2 bromo--ergocryptine, to reduce serum prolactin decreased the activity of cytosolic P-enolpyruvatc carboxykinase (GTP) (EC4.1.1.32) about 50% in both liver and mammary gland of lactating animals. Adrenalectomy had similar effects to those of bromo-a-ergocryptine. In contrast, there was a 50% increase in enzyme activity in the mammary gland of diabetic, lactating rats and a 10-fold increase in liver as compared with normal rats. P-enolpyruvate carboxykinase activity in mammary gland as liver is coordinately regulated by prolactin, glucocorticoids and insulin.  相似文献   
6.
The effects of phorbol ester and forskolin on the net phosphorylation and turnover of P0 phosphate groups was studied in normal and exprimentally diabetic rats. In sciatic nerve segments isolated from normal rats and incubated with [32P]-inorganic phosphate, phosphorylation of the major peripheral myelin protein, P0, was increased 2–5 fold in a time and dose-dependent manner by phorbol 12,13 dibutyrate (PDB). This increase was blocked by the protein kinase inhibitors, H-7 and staurosporine. Both the basal and PDB-stimulated phosphorylation of P0 were significantly greater in segments of sciatic nerve from streptozotocin-induced diabetic rats. Prolonged exposure of nerve segments to PDB abolished the stimulated phosphorylation of P0 and immunoblots of nerve proteins revealed a decrease in the content of the protein kinase C -isoform. The adenylate cyclase activator, forskolin, had no affect on the PDB-stimulated phosphorylation of P0 in normal nerve but decreased phosphorylation in diabetic nerve. To measure turnover of P0 phosphate groups, nerves were incubated with32P and incorporated label was then chased in radioactivity-free medium for up to 4 hours. P0 from normal nerve prelabeled under basal conditions lost 25% of its radioactivity during this time. In contrast, nearly all of the additional phosphate groups prelabeled in the presence of PDB disappeared after 2 hours of chase. P0 phosphate groups from diabetic nerve displayed similar turnover kinetics. When forskolin was added to the chase medium, the turnover of P0 phosphate moieties was accelerated in normal, but not in diabetic nerve. These findings clearly establish a prominent role for protein kinase C in P0 phosphorylation, provide evidence for heterogeneous turnover of P0 phosphate groups and suggest that cyclic AMP-mediated processes may modulate P0 phosphorylation. Further, these results indicate that the metabolism of P0 phosphate moieties is perturbed in nerve from diabetic animals.Special issue dedicated to Dr. Marjoris B. Lees.  相似文献   
7.
Nonenzymatically glycated proteins are preferentially transported across the glomerular filtration barrier, and the glomerular mesangium in diabetes is bathed with serum containing increased concentrations of glycated albumin. We investigated effects of glycated albumin on mesangial cells, which are involved in diabetic nephropathy. [3H]-thymidine incorporation was significantly inhibited when murine mesangial cells were grown in culture media containing human serum that had been nonenzymatically glycated by incubation for 4 days with 28 mM glucose. This inhibition was reversed when monoclonal antibodies that selectively react with Amadori products of glycated albumin were added to the culture media. Purified glycated albumin containing Amadori adducts of the glycation reaction induced significant inhibition of thymidine incorporation and stimulation of Type IV collagen secretion compared with cells cultured in the presence of purified nonglycated albumin. These changes were prevented when monoclonal antibodies specifically reactive with fructosyl-lysine epitopes in glycated albumin were added to the cultures. The antibodies had no effect on growth or collagen production in the presence of nonglycated albumin. The results provide the first evidence directly implicating Amadori adducts in glycated albumin in the pathogenesis of diabetic nephropathy, which is characterized by decreased cellularity in association with expansion of the mesangial matrix.  相似文献   
8.
As one of the common and serious chronic complications of diabetes mellitus (DM), the related mechanism of diabetic retinopathy (DR) has not been fully understood. Müller cell reactive gliosis is one of the early pathophysiological features of DR. Therefore, exploring the manner to reduce diabetes-induced Müller cell damage is essential to delay DR. Thioredoxin 1 (Trx1), one of the ubiquitous redox enzymes, plays a vital role in redox homeostasis via protein–protein interactions, including apoptosis signal-regulating kinase 1 (ASK1). Previous studies have shown that upregulation of Trx by some drugs can attenuate endoplasmic reticulum stress (ERS) in DR, but the related mechanism was unclear. In this study, we used DM mouse and high glucose (HG)-cultured human Müller cells as models to clarify the effect of Trx1 on ERS and the underlying mechanism. The data showed that the diabetes-induced Müller cell damage was increased significantly. Moreover, the expression of ERS and reactive gliosis was also upregulated in diabetes in vivo and in vitro. However, it was reversed after Trx1 overexpression. Besides, ERS-related protein expression, reactive gliosis, and apoptosis were decreased after transfection with ASK1 small-interfering RNA in stable Trx1 overexpression Müller cells after HG treatment. Taken together, Trx1 could protect Müller cells from diabetes-induced damage, and the underlying mechanism was related to inhibited ERS via ASK1.  相似文献   
9.
The rhesus monkey (Macaca mulatta), which has been found to develop spontaneous obesity, non-insulin dependent diabetes mellitus (NIDDM; Type 2), and hypertension, was used to evaluate the potential blood pressure-lowering effects of captopril as well as the specific effects, if any, on the prediabetic state. Intravenous and oral glucose tolerance testing was carried out with oral captopril dosing. Results showed that captopril significantly decreased both systolic and diastolic blood pressure in all monkeys and significantly decreased fasting plasma glucose levels. Based on these preliminary studies in monkeys, we conclude that captopril exerted antihypertensive effects without adverse effects on glucose metabolism.  相似文献   
10.
A phase I trial of a murine anti-ganglioside (GD2) monoclonal antibody (mAb) 14G2a was conducted in 14 neuroblastoma patients and 1 osteosarcoma patient to assess its safety, toxicity and pharmacokinetics in pediatric patients. The pharmacokinetics of mAb 14G2a were biphasic with at 1 2/ of 2.8±2.8 h and at 1 2/ of 18.3±11.8 h. In general,t 1 2/ was dose-dependent with a level of significance ofP=0.036, and it reached a plateau at doses of 250 mg/m2 or more. Overall the peak serum levels were dose-dependent atP<0.001. However, they demonstrated an abrupt increase between doses of 100 mg/m2 and 250 mg/m2. The latter two suggest a saturable mechanism for mAb elimination. In addition, peak serum concentrations were observed earlier at higher mAb doses, which indicates the achievement of a steady state. Thet 1 2/ of mAb 14G2a in children appears to be shorter than in adults. Furthermore, 2 patients demonstrated a considerable decrease int 1 2/ following retreatment with 14G2a. This was paralleled by high human anti-(mouse Ig) antibody levels. This study represents the first comprehensive analysis of murine mAb pharmacokinetics in children and will be useful in the future design of mAb therapy.This work was supported by grants from FDA, FD-R-000377 and NIH U10 CA 28439 and in part by a grant from the general Clinical Research Center program, MOI RR00827, of the National Center for Research Resources, National Institutes of Health. M. M. U.-F. and C.-S. H. were supported in part by a grant from the Children's Cancer Research Foundation, and R. A. R. was supported in part by NIH grant CA 42508  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号