首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   1篇
  国内免费   2篇
  2021年   1篇
  2017年   1篇
  2016年   1篇
  2011年   1篇
  2008年   1篇
  2007年   3篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
1.
多效唑对草莓种质离体保存的影响   总被引:14,自引:0,他引:14  
取离体培养形成的草莓单芽接种到1/2MS附加不同浓度多效唑和0.5mg/L6—BA的培养基上,研究了多效唑对草莓试管苗生长及其保存的影响。结果表明,多效唑对草莓试管苗芽的分化有明显的促进作用,对草莓试管苗的伸长具明显的抑制作用。当多效唑浓度为0.04mg/L,苗高为对照(多效唑浓度为0mg/L)的29%~63%,当多效唑浓度较高(0.2mg/L)时,延迟了试管苗的发根,且抑制根的伸长。在继代培养中,多效唑抑制芽的分化,同时抑制苗的生长。在本试验中,不同浓度的多效唑对草莓试管苗保存成活率差异不十分明显,但野生草莓品种在离体保存中多效唑浓度不宜高,以0.1mg/L为好。  相似文献   
2.
The influence of exogenous gibberellic acid (GA3) andpaclobutrazol, an inhibitor of gibberellin biosynthesis, on growth of callusandsomatic embryogenesis in petiole-derived tissue cultures of Medicagosativa L. has been investigated. GA3 (0.5–500M) or paclobutrazol(5–100 M) were added to either an induction (with 2,4 Dand kinetin) or a differentiation medium (without plant growth regulators).Gibberellin A3, applied during the induction as well as thedifferentiation stage, reduced the weight of callus and increased the number ofsomatic embryos in Medicago sativa L. tissue cultures.Somatic embryo production was increased more by the presence of exogenousGA3 in the differentiation than induction medium. The inclusion ofpaclobutrazol in the induction or differentiation medium caused the inhibitionof callus growth and embryo production. Callus growth was much less affectedthan embryogenesis. These results indicate that gibberellins are beneficial forboth embryoinduction and formation. The level of endogenous gibberellins is presumablysufficient for callus induction and growth. However, it seems not optimal forthe induction and particularly for the differentiation of embryos.  相似文献   
3.
The effect of (2RS, 3RS)-1-(4-Chlorophenyl)-4, 4-dimethyl-2-(1H-1,2,4 triazol-1-yl) pentan-3-ol (PP333) on the growth and transpiration of normal and root pruned colt rootstocks was measured. PP333 reduced plant height, stem diameter increment, leaf number, area and weight and stem weight. Root pruning reduced root, leaf and stem weight, and plant height in control plants. PP333 reduced both total water use and transpiration per unit leaf area and increased stomatal resistance. In control plants root pruning also reduced total water use and increased stomatal resistance. 15 days after the beginning of the experiment half the plants in all treatments were allowed to dry out. The effects of drought, i.e. reduced transpiration, growth and leaf water potentials, were smaller in PP333 treated than in control plants.  相似文献   
4.
本试验探讨了不同浓度多效唑(PP333)对琯溪蜜柚枝梢生长和越冬期叶片淀粉、可溶性糖含量、束缚水/自由水比值的影响.结果表明,多效唑处理能提高越冬期叶片可溶性糖含量,增大束缚水/自由水比值,降低淀粉含量;多效唑处理使新梢长度、节间长度明显受抑制,新梢粗度增加,且随着使用浓度的增大作用增强.  相似文献   
5.
Imidazole fungicides such as imazalil, prochloraz, and triflurnizole and the triazole growth retardant paclobutrazol promote the shoot-inducing effect of exogenous cytokinins in Araceae, such as Spathiphyllum floribundum Schott and Anthurium andreanum Schott. The mechanism of their action could partially be based on the inhibition of gibberellic acid (GA) biosynthesis, because administration of GA3 inhibits the phenomenon completely in S. floribundum. Not only is the suppression of GA biosynthesis involved, but also the metabolism of endogenous cytokinins is significantly altered. Although the balance between isopentenyladenine, zeatin, dihydrozeatin, and their derivatives was shifted to distinguished directions by administration of BA and/or imazalil and/or GA3, no correlation between these changes in metabolic pathways and the number of shoots could be found. The metabolism of BA was not significantly altered by adding imazalil to the micropropagation medium of S. floribundum.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - [9R-5P]DHZ 9--d-ribofuranosyl-dihydrozeatin-monophosphate - [9R-5P]iP 6-isopentenyl-9--d-ribofuranosyladenine-monophosphate - [9R-5P]Z 9--d-ribofuranosyl-zeatin-monophosphate - [9G]BA 6-benzyl-9--d-glucopyranosyladenine - [9G]DHZ 9--d-glucopyranosyl-dihydrozeatin - [9G]iP 6-isopentenyl-9--d-glucopyranosyladenine - [9G]Z 9--d-glucopyranosyl-zeatin - [9R]BA 6-benzyl-9--d-ribofuranosyladenine - [9R]DHZ 9--d-ribofuranosyl-dihydrozeatin - [9R]iP 6-isopentenyl-9--d-ribofuranosyladenine - [9R]Z 9--d-ribofuranosyl-zeatin - BA 6-benzyladenine - DHZ dihydrozeatin - ES+ LC-MS/MS HPLC coupled Electrospray Tandem Mass Spectrometry - f.m. fresh mass - mT 6-(3-hydroxybenzyl)adenine - IMA imazalil - iP isopentenyladenine - NAA 1-naphthalene acetic acid - NFT Nutrient Film Technique - (OG)[9R]DHZ O--glucopyranosyl-9--d-ribofuranosyl-dihydrozeatin - (OG)[9R]Z O--d-glucopyranosyl-9--d-ribofuranosyl-zeatin - (OG)DHZ O--d-glucopyranosyl-dihydrozeatin - (OG)Z O--d-glucopyranosyl-zeatin - PAR Photosynthetic Active Radiation - PBZ paclobutrazol - PRO prochloraz - TDZ thidiazuron - TRI triflurnizole - Z zeatin  相似文献   
6.
植物生长调节剂对龙眼内源激素及花芽分化的影响   总被引:17,自引:0,他引:17  
研究了PP333和GA对龙眼(DimocarpuslonganaLour),成花的作用及其与内源激素的关系。结果表明,PP333处理后,iPA含量明显高于GA的处理,而GA含量则呈现由高到低逐渐下降的趋势,GA处理正好相反,PP333处理后芽中的ABA含量明显低GA处理,表明高含量的GA和ABA不利于花芽分化,而高含量的细胞分裂素则有利于花芽分化,外施P333可缩短花序长度,提高着果率和增加产量。  相似文献   
7.
植物开花机理是生物学中的一个基本问题,多年来人们进行过许多的研究,积累了大量的事实,然而对开花的机理仍然还不甚清楚。因而在利用原有实验系统的同时,有必要寻找更多简单,又便于分析的实验系统。Jullien等报告离体培养的大豆子叶节能直接产生花芽。我们在建立离体培养黄瓜子叶直接单独形成雄花或雌花的实验系统的过程中,发现黄瓜幼苗去除顶芽后在子叶节处也能直接形成花芽。这一现象有可能用于深入研究各营养器官和花启动间关系等问题,定将  相似文献   
8.
Two similar field trials were carried out during 2003 in a hot tropical region of eastern Ethiopia to investigate the effect of leaf and soil applied paclobutrazol on the growth, dry matter production and assimilate partitioning in potato. A month after planting paclobutrazol was applied as a foliar spray or soil drench at rates of 0, 2, 3, and 4 kg a.i. paclobutrazol ha–1. Plants were sampled during treatment application and subsequently 2, 4, 6 and 8 weeks after treatment application. The data was analyzed using standard growth analyses techniques. None of the growth parameters studied was affected by the method of paclobutrazol application. Paclobutrazol decreased leaf area index, crop growth rate, and total biomass production, and increased specific leaf weight, tuber growth rate, net assimilation rate, and partitioning coefficient of potato. At all harvesting stages, paclobutrazol reduced the partitioning of assimilate to the leaves, stems, and roots and stolons and increased allocation to the tubers. Although paclobutrazol decreased the total biomass production it improved tuber yield by partitioning more assimilates to the tubers. Paclobutrazol improved the productivity of potato under tropical conditions by redirecting assimilate allocation to the tubers.  相似文献   
9.
为了解喷施多效唑对高粱(Sorghum bicolor)生长发育和生理的影响,在高粱品种‘农大红1号’拔节期喷施多效唑水溶液,对高粱的生长发育和生理指标进行了研究。结果表明,喷施不同浓度的多效唑后,高粱株高均比对照降低,基部节间长度缩短,茎粗增加,且穗粒重也提高。同时,高粱叶片的叶绿素含量和净光合速率提高,且抗氧化酶活性提高并降低了丙二醛含量。因此喷施多效唑可提高高粱的抗倒伏性,延缓叶片衰老,提高产量。在大田生产中,以拔节期喷施450~600 mg/L多效唑的效果较好。  相似文献   
10.
Pre-treating paclobutrazol enhanced chilling tolerance of sweetpotato   总被引:2,自引:0,他引:2  
The objective of this work was to study changes in low molecular weight antioxidants and antioxidative enzymes in chilling-stressed sweetpotato, as affected by paclobutrazol (PBZ) pre-treatment 24 h prior to exposure to chilling conditions. Sweetpotato ‘TN71’ and ‘TN65’ were treated with 300 mg PBZ/5 ml/plant, after which plants were subjected to 7°C/7°C (day/night) for periods of 1, 3 and 5 days, followed by a 3-day recovery period at 24°C/20°C (day/night). A factorial experiment in completely randomized design with four replications was used in this study. Young fully expanded leaves at each temperature and period of time were clipped for antioxidative system measurement. We concluded that different varieties displayed variations in their oxidative system, and the differential expressions of each genotype were associated with chilling stress response. Plants with various antioxidative systems responded differently to chilling stress according to the duration of the chilling period and subsequent re-warming period. ASA, GSH and GSSG contents were enhanced in TN71 prior to chilling stress. Increased APX, GR, ASA and MDA activities accounted for chilling tolerance in TN65. Furthermore, our results indicate that the elevated levels of the antioxidative system observed after PBZ pre-treatments afforded the sweetpotato leaf improved chilling-stress tolerance. The levels of ASA and GSSG of both TN71 and TN65 under chilling were significantly raised by pre-treating with PBZ. PBZ pre-treatment exhibited the important function of enhancing the restoration of leaf oxidative damage under chilling stress and increasing the chilling tolerance of plants to mitigate chilling stress effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号