首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   5篇
  国内免费   3篇
  2023年   4篇
  2022年   2篇
  2021年   3篇
  2020年   6篇
  2019年   12篇
  2018年   15篇
  2017年   4篇
  2016年   1篇
  2015年   4篇
  2014年   12篇
  2013年   11篇
  2012年   9篇
  2011年   8篇
  2010年   5篇
  2009年   10篇
  2008年   4篇
  2007年   3篇
  2006年   3篇
  2005年   3篇
  2004年   3篇
  1999年   1篇
  1994年   1篇
  1984年   1篇
排序方式: 共有125条查询结果,搜索用时 42 毫秒
1.
We describe a computational protocol, called DDMI, for redesigning scaffold proteins to bind to a specified region on a target protein. The DDMI protocol is implemented within the Rosetta molecular modeling program and uses rigid-body docking, sequence design, and gradient-based minimization of backbone and side-chain torsion angles to design low-energy interfaces between the scaffold and target protein. Iterative rounds of sequence design and conformational optimization were needed to produce models that have calculated binding energies that are similar to binding energies calculated for native complexes. We also show that additional conformation sampling with molecular dynamics can be iterated with sequence design to further lower the computed energy of the designed complexes. To experimentally test the DDMI protocol, we redesigned the human hyperplastic discs protein to bind to the kinase domain of p21-activated kinase 1 (PAK1). Six designs were experimentally characterized. Two of the designs aggregated and were not characterized further. Of the remaining four designs, three bound to the PAK1 with affinities tighter than 350 μM. The tightest binding design, named Spider Roll, bound with an affinity of 100 μM. NMR-based structure prediction of Spider Roll based on backbone and 13Cβ chemical shifts using the program CS-ROSETTA indicated that the architecture of human hyperplastic discs protein is preserved. Mutagenesis studies confirmed that Spider Roll binds the target patch on PAK1. Additionally, Spider Roll binds to full-length PAK1 in its activated state but does not bind PAK1 when it forms an auto-inhibited conformation that blocks the Spider Roll target site. Subsequent NMR characterization of the binding of Spider Roll to PAK1 revealed a comparably small binding ‘on-rate’ constant (? 105 M− 1 s− 1). The ability to rationally design the site of novel protein-protein interactions is an important step towards creating new proteins that are useful as therapeutics or molecular probes.  相似文献   
2.
Cellular biomolecular complexes including protein–protein, protein–RNA, and protein–DNA interactions regulate and execute most biological functions. In particular in brain, protein–protein interactions (PPIs) mediate or regulate virtually all nerve cell functions, such as neurotransmission, cell–cell communication, neurogenesis, synaptogenesis, and synaptic plasticity. Perturbations of PPIs in specific subsets of neurons and glia are thought to underly a majority of neurobiological disorders. Therefore, understanding biological functions at a cellular level requires a reasonably complete catalog of all physical interactions between proteins. An enzyme-catalyzed method to biotinylate proximal interacting proteins within 10 to 300 nm of each other is being increasingly used to characterize the spatiotemporal features of complex PPIs in brain. Thus, proximity labeling has emerged recently as a powerful tool to identify proteomes in distinct cell types in brain as well as proteomes and PPIs in structures difficult to isolate, such as the synaptic cleft, axonal projections, or astrocyte–neuron junctions. In this review, we summarize recent advances in proximity labeling methods and their application to neurobiology.  相似文献   
3.

Objective

The purpose of this study is to provide a further theoretical basis for the role of Suberoyllanilide hyroxamic acid (SAHA) affect on Dendritic cells (DCs).

Methods

We first downloaded the GSE74306 microarray data, which was about the effect of SAHA act on DCs, from the Gene Expression Omnibus database. Then we analyzed the differential expression genes (DEGs) between SAHA-treated DCs and SAHA-untreated DCs by limma package of R software; The Database for Annotation, Visualization and Integrated Discovery was used to analyze the Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for these DEGs. The protein protein interaction (PPI) network was constructed by using STRING database, Cytoscape 3.6.1 software was used to dispose the PPI network for visualization. Finally, we determine the Hub genes in the PPI network according by the degree centrality and betweenness centrality, which were calculated by the CentScaPe 2.2 plug-in of Cytoscape 3.6.1 software.

Result

There were 551 DEGs between SAHA-treated DC cells and SAHA-untreated DC cells, including 357 upregulated genes and 194 downregulated genes. These DEGs genes were enriched in 115 Go terms (Biological Process, 51; Cellular Component, 35 and Molecular Function, 29) and a total of 16 pathways. Glutathione metabolic process, Glutathione metabolism pathway, Rheumatoid arthritis pathway and Systemic lupus erythematosus pathway were most significant function clusters. In the PPI network, Rad51, Src, and Eno2 were Hub genes.

Conclusion

The biological function and KEGG pathway enriched by DEGs may reveal the molecular mechanism of SAHA acting on DC cells. Its Hub genes, Src, Rad51 and Eno2, were expected to be new targets for SAHA therapeutic effects. However, it still need to be confirmed by the next more rigorous molecular biological experiments research.  相似文献   
4.
Proteins are the building blocks, effectors and signal mediators of cellular processes. A protein’s function, regulation and localization often depend on its interactions with other proteins. Here, we describe a protocol for the yeast protein-fragment complementation assay (PCA), a powerful method to detect direct and proximal associations between proteins in living cells. The interaction between two proteins, each fused to a dihydrofolate reductase (DHFR) protein fragment, translates into growth of yeast strains in presence of the drug methotrexate (MTX). Differential fitness, resulting from different amounts of reconstituted DHFR enzyme, can be quantified on high-density colony arrays, allowing to differentiate interacting from non-interacting bait-prey pairs. The high-throughput protocol presented here is performed using a robotic platform that parallelizes mating of bait and prey strains carrying complementary DHFR-fragment fusion proteins and the survival assay on MTX. This protocol allows to systematically test for thousands of protein-protein interactions (PPIs) involving bait proteins of interest and offers several advantages over other PPI detection assays, including the study of proteins expressed from their endogenous promoters without the need for modifying protein localization and for the assembly of complex reporter constructs.  相似文献   
5.
Protein-protein interactions (PPIs) play an important role in many biological functions. PPIs typically involve binding between domains, the basic units of protein folding, evolution and function. Identifying domain-domain interactions (DDIs) would aid understanding PPI networks. Recently, many computational methods aimed to infer DDIs from databases of interacting proteins and subsequently used the inferred DDIs to predict new PPIs. We attempt to describe systematically current domain-based approaches including the association method, maximum likelihood estimation and parsimonious explanation method. The performance of these methods at inferring DDIs and predicting PPIs was evaluated comparatively. We observe that each method generates artefacts in certain situations and discuss biases in the available benchmark sets.  相似文献   
6.
We report that Pro74 in human stefin B is critical for fibril formation and that proline isomerization plays an important role. The stefin B P74S mutant did not fibrillate over the time of observation at 25 °C, and it exhibited a prolonged lag phase at 30 °C and 37 °C. The peptidyl prolyl cis/trans isomerase cyclophilin A, when added to the wild-type protein, exerted two effects: it prolonged the lag phase and increased the yield and length of the fibrils. Addition of the inactive cyclophilin A R55A variant still resulted in a prolonged lag phase but did not mediate the increase of the final fibril yield. These results demonstrate that peptidyl prolyl cis/trans isomerism is rate-limiting in stefin B fibril formation.  相似文献   
7.
Intrinsic protein disorder is a widespread phenomenon characterised by a lack of stable three-dimensional structures and is considered to play an important role in protein-protein interactions (PPIs). This study examined the genome-wide preference of disorder in PPIs by using exhaustive disorder prediction in human PPIs. We categorised the PPIs into three types (interaction between disordered proteins, interaction between structured proteins, and interaction between a disordered protein and a structured protein) with regard to the flexibility of molecular recognition and compared these three interaction types in an existing human PPI network with those in a randomised network. Although the structured regions were expected to become the identifiers for binding recognition, this comparative analysis revealed unexpected results. The occurrence of interactions between disordered proteins was significantly frequent, and that between a disordered protein and a structured protein was significantly infrequent. We found that this propensity was much stronger in interactions between nonhub proteins. We also analysed the interaction types from a functional standpoint by using GO, which revealed that the interaction between disordered proteins frequently occurred in cellular processes, regulation, and metabolic processes. The number of interactions, especially in metabolic processes between disordered proteins, was 1.8 times as large as that in the randomised network. Another analysis conducted by using KEGG pathways provided results where several signaling pathways and disease-related pathways included many interactions between disordered proteins. All of these analyses suggest that human PPIs preferably occur between disordered proteins and that the flexibility of the interacting protein pairs may play an important role in human PPI networks.  相似文献   
8.
Intrinsically disordered domains have been reported to play important roles in signal transduction networks by introducing cooperativity into protein–protein interactions. Unlike intrinsically disordered domains that become ordered upon binding, the EF-SAM domain in the stromal interaction molecule (STIM) 1 is distinct in that it is ordered in the monomeric state and partially unfolded in its oligomeric state, with the population of the two states depending on the local Ca2 + concentration. The oligomerization of STIM1, which triggers extracellular Ca2 + influx, exhibits cooperativity with respect to the local endoplasmic reticulum Ca2 + concentration. Although the physiological importance of the oligomerization reaction is well established, the mechanism of the observed cooperativity is not known. Here, we examine the response of the STIM1 EF-SAM domain to changes in Ca2 + concentration using mathematical modeling based on in vitro experiments. We find that the EF-SAM domain partially unfolds and dimerizes cooperatively with respect to Ca2 + concentration, with Hill coefficients and half-maximal activation concentrations very close to the values observed in vivo for STIM1 redistribution and extracellular Ca2 + influx. Our mathematical model of the dimerization reaction agrees quantitatively with our analytical ultracentrifugation-based measurements and previously published free energies of unfolding. A simple interpretation of these results is that Ca2 + loss effectively acts as a denaturant, enabling cooperative dimerization and robust signal transduction. We present a structural model of the Ca2 +-unbound EF-SAM domain that is consistent with a wide range of evidence, including resistance to proteolytic cleavage of the putative dimerization portion.  相似文献   
9.
Cyclization has been recognized as a valuable technique for increasing the efficacy of small molecule and peptide therapeutics. Here we report the application of a hydrocarbon staple to a rationally-designed cationic antimicrobial peptide (CAP) that acquires increased membrane targeting and interaction vs. its linear counterpart. The previously-described CAP, 6K-F17 (KKKKKK-AAFAAWAAFAA-NH2) was used as the backbone for incorporation of an i to i?+?4 helical hydrocarbon staple through olefin ring closing metathesis. Stapled versions of 6K-F17 showed an increase in non-selective membrane interaction, where the staple itself enhances the degree of membrane interaction and rate of cell death while maintaining high potency against bacterial membranes. However, the higher averaged hydrophobicity imparted by the staple also significantly increases toxicity to mammalian cells. This deleterious effect is countered through stepwise reduction of the stapled 6K-F17’s backbone hydrophobicity through polar amino acid substitutions. Circular dichroism assessment of secondary structure in various bacterial membrane mimetics reveals that a helical structure may improve – but is not an absolute requirement for – antimicrobial activity of 6K-F17. Further, phosphorus-31 static solid state NMR spectra revealed that both non-toxic stapled and linear peptides bind bacterial membranes in a similar manner that does not involve a detergent-like mechanism of lipid removal. The overall results suggest that the technique of hydrocarbon stapling can be readily applied to membrane-interactive CAPs to modulate how they interact and target biological membranes.  相似文献   
10.

Background

Xeroderma Pigmentosum (XP) is a disease caused by mutations in the nucleotide excision repair (NER) pathway. Patients with XP exhibit a high propensity to skin cancers and some subtypes of XP can even present neurological impairments. During NER, DDB2 (XPE), in complex with DDB1 (DDB-Complex), performs the DNA lesion recognition. However, not much is known about how mutations found in XP patients affect the DDB2 structure and complex assembly. Thus, we searched for structural evidence associated with the role of three naturally occurring mutations found in XPE patients: R273H, K244E, and L350P.

Methods

Each mutant was individually constructed and submitted to multiple molecular dynamics simulations, done in triplicate for each designed system. Additionally, Dynamic Residue Interaction Networks were designed for each system and analyzed parallel with the simulations.

Results

DDB2 mutations promoted loss of flexibility in the overall protein structure, producing a different conformational behavior in comparison to the WT, especially in the region comprising residues 354 to 371. Furthermore, the DDB-complex containing the mutated forms of DDB2 showed distinct behaviors for each mutant: R273H displayed higher structural instability when complexed; L350P affected DDB1 protein-protein binding with DDB2; and K244E, altered the complex binding trough different ways than L350P.

Conclusions

The data gathered throughout the analyses helps to enlighten the structural basis for how naturally occurring mutations found in XPE patients impact on DDB2 and DDB1 function.

General significance

Our data influence not only on the knowledge of XP but on the DNA repair mechanisms of NER itself.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号