首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11605篇
  免费   772篇
  国内免费   691篇
  2023年   114篇
  2022年   135篇
  2021年   196篇
  2020年   215篇
  2019年   356篇
  2018年   338篇
  2017年   243篇
  2016年   271篇
  2015年   319篇
  2014年   580篇
  2013年   732篇
  2012年   502篇
  2011年   651篇
  2010年   470篇
  2009年   585篇
  2008年   603篇
  2007年   684篇
  2006年   556篇
  2005年   561篇
  2004年   494篇
  2003年   450篇
  2002年   375篇
  2001年   277篇
  2000年   227篇
  1999年   219篇
  1998年   203篇
  1997年   188篇
  1996年   167篇
  1995年   194篇
  1994年   170篇
  1993年   172篇
  1992年   164篇
  1991年   137篇
  1990年   120篇
  1989年   103篇
  1988年   95篇
  1987年   91篇
  1986年   85篇
  1985年   121篇
  1984年   147篇
  1983年   119篇
  1982年   141篇
  1981年   111篇
  1980年   87篇
  1979年   72篇
  1978年   41篇
  1977年   54篇
  1976年   41篇
  1975年   38篇
  1974年   21篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
2.
The water relations of shoots of young jack pine (Pinus banksiana Lamb.) seedlings were examined 6 and 15 weeks after the initiation of four different dynamic nitrogen (N) treatments using a pressure-volume analysis. The N treatments produced a wide range of needle N concentrations from 12 to 32 mg g?1 dry mass and a 10-fold difference in total dry mass at 15 weeks. Osmotic potential at full turgor did not change over the range of needle N concentrations observed. Osmotic potential at turgor-loss point, however, declined as N concentrations decreased, indicating an increased ability of N-deficient jack pine plants to maintain turgor. The increase could be attributed largely to an increase in cell wall elasticity, suggesting that elasticity changes may be a common, significant adaptation of plants to environmental stresses. Dry mass per unit saturated water almost doubled as needle N level dropped from 32 to 12 mg g?1 and was inversely correlated to the bulk modulus of elasticity. This suggests that cell wall elasticity is determined more by the nature of its cross-linking matrix than by the total amount of cell wall material present. Developmental change was evident in the response of some water relation variables to N limitation.  相似文献   
3.
Methoxychlor, a currently used pesticide, is demethylated and hydroxylated by several hepatic microsomal cytochrome P450 enzymes. Also, methoxychlor undergoes metabolic activation, yielding a reactive intermediate (M*) that binds irreversibly and apparently covalently to microsomal proteins. The study investigated whether methoxychlor could inhibit or inactivate certain liver microsomal P450 enzymes. The regioselective and stereoselective hydrox-ylation of testosterone and the 2-hydroxylation of estradiol (E2) were utilized as markers of the P450 enzymes inhibited by methoxychlor. Both reversible and time-dependent inhibition were examined. Coincubation of methoxychlor and testosterone with liver microsomes from phenobarbital treated (PB-microsomes) male rats, yielded marked diminution of 2α- and 16α-testosterone hydroxylation, indicating strong inhibition of P4502C11 (P450h). Methoxychlor moderately inhibited 2β-, 7α-, 15α-, 15β-, and 16β-hydroxylation and androstenedi-one formation. There was only a weak inhibition of 6β-ydroxylation of testosterone. The methox-ychlor-mediated inhibition of 6β-hydroxylation was competitive. By contrast, when methoxychlor was permitted to be metabolized by PB-microsomes or by liver microsomes from pregnenolone-16α-car-bonitrile treated rats (PCN-microsomes) prior to addition of testosterone, a pronounced time-dependent inhibition of 6β-hydroxylation was observed, suggesting that methoxychlor inactivates the P450 3A isozyme(s). The di-demethylated methoxychlor (bis-OH-M) and the tris-hydroxy (ca-techol) methoxychlor metabolite (tris-OH-M) inhibited 6β-hydroxylation in PB-microsomes competitively and noncompetitively, respectively; however, these methoxychlor metabolites did not exhibit a time-dependent inhibition. Methoxychlor inhibited competitively the formation of 7α-hydroxytestosterone (7α-OH-T) and 16α-hydroxy-testosterone (16α-OH-T) but exhibited little or no time-dependent inhibition of generation of these metabolites, indicating that P450s 2A1, 2B1/B2, and 2C11 were inhibited but not inactivated. Methoxychlor inhibited in a time-dependent fashion the 2-hydroxylation of E2 in PB-microsomes. However, bis-OH-M exhibited solely reversible inhibition of the 2-hydroxylation, supporting our conclusion that the inactivation of P450s does not involve participation of the demethylated metabolites. Both competitive inhibition and time-dependent inactivation of human liver P450 3A (6β-hydroxylase) by methoxychlor, was observed. As with rat liver microsomes, the human 6β-hydroxylase was inhibited by bis-OH-M and tris-OH-M competitively and noncompetitively, respectively. Testosterone and estradiol strongly inhibited the irreversible binding of methoxychlor to microsomal proteins. This might explain the “clean” competitive inhibition by methoxychlor of the 6β-OH-T formation when the compounds were coin-cubated. Glutathione (GSH) has been shown to interfere with the irreversible binding of methoxychlor to PB-microsomal proteins. The finding that the coincubation of GSH with methoxychlor partially diminishes the time-dependent inhibition of 6β-hydroxylation provides supportive evidence that the inactivation of P450 3A isozymes by methoxychlor is related to the formation of M*.  相似文献   
4.
5.
The need for crop load reduction to improve fruit size andconsistency of cropping on plum and apricot trees is discussed. Threealternative strategies of achieving this objective are described: byinhibition of flowering, prevention of fruit set or stimulation ofincreased fruitlet abscission. Methods of achieving each of thesestrategies, by manual, mechanical or chemical means are discussed andevaluated.  相似文献   
6.
The microbial metabolism of organic matter (OM) in seagrass beds can create sulfidic conditions detrimental to seagrass growth; iron (Fe) potentially has ameliorating effects through titration of the sulfides and the precipitation of iron-sulfide minerals into the sediment. In this study, the biogeochemical effects of Fe availability and its interplay with sulfur and OM on sulfide toxicity, phosphorous (P) availability, seagrass growth and community structure were tested. The availability of Fe and OM was manipulated in a 2 × 2 factorial experiment arranged in a Latin square, with four replicates per treatment. The treatments included the addition of Fe, the addition of OM, the addition of both Fe and OM as well as no addition. The experiment was conducted in an oligotrophic, iron-deficient seagrass bed. Fe had an 84.5% retention efficiency in the sediments with the concentration of Fe increasing in the seagrass leaves over the course of the experiment. Porewater chemistry was significantly altered with a dramatic decrease in sulfide levels in Fe addition plots while sulfide levels increased in the OM addition treatments. Phosphorus increased in seagrass leaves collected in the Fe addition plots. Decreased sulfide stress was evidenced by heavier δ34S in leaves and rhizomes from plots to which Fe was added. The OM addition negatively affected seagrass growth but increased P availability; the reduced sulfide stress in Fe added plots resulted in elevated productivity. Fe availability may be an important determinant of the impact that OM has on seagrass vitality in carbonate sediments vegetated with seagrasses.  相似文献   
7.
《植物生态学报》2018,42(9):963
全球氮沉降不仅改变土壤氮和磷的有效性, 同时也改变氮磷比例。氮磷供应量、比例及其交互作用可能会影响植物种子性状。该研究在内蒙古草原基于沙培盆栽实验种植灰绿藜(Chenopodium glaucum), 设置3个氮磷供应量水平和3个氮磷比例的正交实验来探究氮磷供应量、比例及其交互作用对灰绿藜种子性状的影响。结果发现氮磷供应量对种子氮浓度、磷浓度和萌发率影响的相对贡献(15%-24%)大于氮磷比例(3%-7%), 而种子大小只受氮磷比例的影响。同时氮磷供应量和比例之间的交互作用显著影响种子氮浓度和磷浓度。同等氮磷比例情况下, 低量养分供应提高种子氮浓度、磷浓度和萌发率。氮磷比例只有在养分匮乏的环境中才会对种子大小和萌发率产生显著影响。总之, 灰绿藜种子不同性状对氮或磷限制的敏感性不同, 同时种子性状也对养分限制表现出适应性和被动响应。  相似文献   
8.
Second messengers are small rapidly diffusing molecules or ions that relay signals between receptors and effector proteins to produce a physiological effect. Lipid messengers constitute one of the four major classes of second messengers. The hydrolysis of two main classes of lipids, glycerophospholipids and sphingolipids, generate parallel profiles of lipid second messengers: phosphatidic acid (PA), diacylglycerol (DAG), and lysophosphatidic acid versus ceramide, ceramide-1-phosphate, sphingosine, and sphingosine-1-phosphate, respectively. In this review, we examine the mechanisms by which these lipid second messengers modulate aldosterone production at multiple levels. Aldosterone is a mineralocorticoid hormone responsible for maintaining fluid volume, electrolyte balance, and blood pressure homeostasis. Primary aldosteronism is a frequent endocrine cause of secondary hypertension. A thorough understanding of the signaling events regulating aldosterone biosynthesis may lead to the identification of novel therapeutic targets. The cumulative evidence in this literature emphasizes the critical roles of PA, DAG, and sphingolipid metabolites in aldosterone synthesis and secretion. However, it also highlights the gaps in our knowledge, such as the preference for phospholipase D-generated PA or DAG, as well as the need for further investigation to elucidate the precise mechanisms by which these lipid second messengers regulate optimal aldosterone production.  相似文献   
9.
10.
Summary The pars distalis of the anterior pituitary is known to be regulated by hypothalamic hormones. Recently, we have discovered the presence of substance P-like immunoreactive nerve fibers in the pars distalis of the monkeys. Substance P-like immunoreactivity in the pars distalis of the dog was investigated in this study. A substantial amount of substance P-like immunoreactive nerve fibers with a large amount of varicosities were found. They were widely distributed in the gland, more abundant along its periphery. Most of them were closely related to the glandular tissue, some were located on vascular walls. Substance P-like immunoreactive nerve fibers were also found in the meningeal sheath of the anterior pituitary. They could be followed into the parenchyma of the gland.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号