首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5871篇
  国内免费   20篇
  完全免费   529篇
  2022年   23篇
  2021年   53篇
  2020年   87篇
  2019年   199篇
  2018年   279篇
  2017年   215篇
  2016年   180篇
  2015年   134篇
  2014年   212篇
  2013年   942篇
  2012年   211篇
  2011年   295篇
  2010年   212篇
  2009年   391篇
  2008年   439篇
  2007年   439篇
  2006年   396篇
  2005年   307篇
  2004年   309篇
  2003年   260篇
  2002年   198篇
  2001年   138篇
  2000年   81篇
  1999年   86篇
  1998年   65篇
  1997年   90篇
  1996年   40篇
  1995年   47篇
  1994年   28篇
  1993年   19篇
  1992年   18篇
  1991年   7篇
  1990年   8篇
  1989年   7篇
  1988年   2篇
  1987年   3篇
排序方式: 共有6420条查询结果,搜索用时 63 毫秒
1.
Reactive Oxygen Species and the Central Nervous System   总被引:76,自引:0,他引:76  
Radicals are species containing one or more unpaired electrons, such as nitric oxide (NO.). The oxygen radical superoxide (O2.-) and the nonradical hydrogen peroxide (H2O2) are produced during normal metabolism and perform several useful functions. Excessive production of O2.- and H2O2 can result in tissue damage, which often involves generation of highly reactive hydroxyl radical (.OH) and other oxidants in the presence of "catalytic" iron or copper ions. An important form of antioxidant defense is the storage and transport of iron and copper ions in forms that will not catalyze formation of reactive radicals. Tissue injury, e.g., by ischemia or trauma, can cause increased metal ion availability and accelerate free radical reactions. This may be especially important in the brain because areas of this organ are rich in iron and CSF cannot bind released iron ions. Oxidative stress on nervous tissue can produce damage by several interacting mechanisms, including increases in intracellular free Ca2+ and, possibly, release of excitatory amino acids. Recent suggestions that free radical reactions are involved in the neurotoxicity of aluminum and in damage to the substantia nigra in patients with Parkinson's disease are reviewed. Finally, the nature of antioxidants is discussed, it being suggested that antioxidant enzymes and chelators of transition metal ions may be more generally useful protective agents than chain-breaking antioxidants. Careful precautions must be used in the design of antioxidants for therapeutic use.  相似文献
2.
Salt damage to plants has been attributed to a combination of several factors including mainly osmotic stress and the accumulation of toxic ions. Recent findings in our laboratory showed that phospholipid hydroperoxide glutathione peroxidase (PHGPX), an enzyme active in the cellular antioxidant system, was induced by salt in citrus cells and mainly in roots of plants. Following this observation we studied the two most important enzymes active in elimination of reactive oxygen species, namely, superoxide dismutase (SOD) and ascorbate peroxidase (APX), to determine whether a general oxidative stress is induced by salt. While Cu/Zn-SOD activity and cytosolic APX protein level were similarly induced by salt and methyl viologen, the response of PHGPX and other APX isozymes was either specific to salt or methyl viologen, respectively. Unlike PHGPX, cytosolic APX and Cu/Zn-SOD were not induced by exogenously added abscisic acid. Salt induced a significant increase in SOD activity which was not matched by the subsequent enzyme APX. We suggest that the excess of H2O2 interacts with lipids to form hydroperoxides which in turn induce and are removed by PHGPX. Ascorbate peroxidase seems to be a key enzyme in determining salt tolerance in citrus as its constitutive activity in salt-sensitive callus is far below the activity observed in salt-tolerant callus, while the activities of other enzymes involved in the defence against oxidative stress, namely SOD, glutathione reductase and PHGPX, are essentially similar. Received: 10 January 1997 / Accepted: 28 May 1997  相似文献
3.
Oxidative stress-induced apoptosis prevented by trolox   总被引:45,自引:0,他引:45  
The ability of oxidative stress to induce apoptosis (programmed cell death), and the effect of Trolox, a water soluble vitamin E analog, on this induction were studied in vitro in mouse thymocytes. Cells were exposed to oxidative stress by treating them with 0.5–10 μM hydrogen peroxide (H2O2) for 10 min, in phosphate-buffered saline supplemented with 0.1 mM ferrous sulfate. Cells were resuspended in RPMI 1640 medium with 10% serum and incubated at 37°C under 5% CO2 in air. Electron microscopic studies revealed morphological changes characteritic of apoptosis in H2O2-treated fragmented the DNA in a manner typical of apoptotic cells, producing a ladder pattern of 200 base pair increments upon agarose gel electrophoresis. The percentage of DNA fragmentation (determined fluorometrically) increased with increasing doses of H2O2 and postexposure incubation times. Pre- or posttreatment of cells with Trolox reduced H2O2-induced DNA fragmentation to control levels and below. The results indicate that oxidative stress induces apoptosis in thymocytes, and this induction can be prevented by Trolox, a powerful inhibitor of membrane damage.  相似文献
4.
5.
6.
Many environmental conditions subject plants to oxidative stress, in which reactive oxygen species (ROS) are overproduced. These ROS act as transduction signals in plant defense responses, but also cause effects that result in cellular damage. Since nitric oxide (NO) is a bioactive molecule able to scavenge ROS, we analyzed its effect on some cytotoxic processes produced by ROS in potato (Solanum tuberosum L. cv. Pampeana) leaves. Two NO donors: (i) sodium nitroprusside and (ii) a mixed solution of ascorbic acid and NaNO2, were able to prevent chlorophyll loss mediated by the methyl viologen herbicide diquat (a ROS generator), with effective concentrations falling between 10 and 100 μM of the donors. This protection was mimicked by thiourea and penicillamine, two antioxidant compounds. Residual products from NO generation and decomposition failed to prevent chlorophyll decline. A specific NO scavenger, the potassium salt of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO), arrested NO-mediated chlorophyll protection. In addition, some events mediated by ROS during infection of potato leaves with Phytophthora infestans (race 1, 4, 7, 8, 10, 11, mating type A2) were also examined. In this sense, NO proved to markedly decrease ion leakage and the number of lesions, indicative of cell death, produced upon infection in potato leaves. The NO-mediated decrease in ion leakage was also inhibited by carboxy-PTIO. Fragmentation of DNA diminished when P. infestans-infected potato leaves were treated with 100 μM SNP. These results suggest that, acting as an antioxidant, NO can strongly counteract many ROS-mediated cytotoxic processes in plants. Moreover, the evidence of NO functionality in the plant kingdom is strengthened by this work. Received: 18 December 1998 / Accepted: 19 January 1999  相似文献
7.
植物叶片衰老与氧化胁迫   总被引:39,自引:0,他引:39  
叶片衰老是叶片生长发育进程中的最后阶段,与活性氧伤害有着密切的关系。介绍了植物叶片衰老过程中活性氧产生及清除系统的变化,讨论了对水分胁迫与氧化胁迫的交叉抗性,并对下一步的研究作出了展望  相似文献
8.
镉胁迫使萝卜幼苗超氧阴离子(O2)、过氧化氢(H2O2)和丙二醛(MDA)含量增加;随着镉浓度提高,超氧化物歧化酶(SOD)活性首先明显上升,然后逐渐下降,甚至低于对照;叶片过氧化氢酶(CAT)活性明显增加,根系CAT活性则减少;根系以及较高浓度镉处理后期叶片的谷胱甘肽还原酶(GR)活性均显著增加.由此推测:在胁迫初期可能主要由SOD和CAT发挥抗氧化作用,而在胁迫后期由于抗坏血酸-谷胱甘肽(AsA-GsH)循环途径的激活,还原型谷胱甘肽和植物络合素含量的提高可能在清除活性氧或者直接螯合镉中起作用.  相似文献
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号