首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1039篇
  免费   60篇
  国内免费   56篇
  2023年   10篇
  2022年   6篇
  2021年   12篇
  2020年   14篇
  2019年   18篇
  2018年   10篇
  2017年   22篇
  2016年   22篇
  2015年   23篇
  2014年   29篇
  2013年   45篇
  2012年   25篇
  2011年   35篇
  2010年   33篇
  2009年   56篇
  2008年   77篇
  2007年   72篇
  2006年   48篇
  2005年   53篇
  2004年   49篇
  2003年   37篇
  2002年   33篇
  2001年   25篇
  2000年   21篇
  1999年   27篇
  1998年   24篇
  1997年   25篇
  1996年   22篇
  1995年   25篇
  1994年   24篇
  1993年   16篇
  1992年   17篇
  1991年   18篇
  1990年   14篇
  1989年   13篇
  1988年   20篇
  1987年   19篇
  1986年   17篇
  1985年   22篇
  1984年   15篇
  1983年   13篇
  1982年   11篇
  1981年   11篇
  1980年   6篇
  1979年   6篇
  1977年   5篇
  1976年   2篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
排序方式: 共有1155条查询结果,搜索用时 78 毫秒
1.
2.
丁俊祥  邹杰  唐立松  刘卫国 《生态学报》2015,35(16):5316-5323
对于田地区3种不同生境(沼泽、盐化沙丘过渡带和沙丘顶)芦苇的生长环境特征、光合特性、渗透调节及抗氧化系统的特征进行研究。结果表明:芦苇叶片的Pn日变化在沼泽生境呈单峰曲线,在盐化沙丘过渡带和沙丘顶部均为双峰曲线,光合"午休"现象明显,气孔导度降低是其主要原因。脯氨酸和可溶性糖含量随根区土壤水分减少和盐分加剧增加显著,其中可溶性糖含量变化剧烈,对抵御干旱和盐渍化危害的贡献较大。芦苇叶片超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性随干旱及盐分加剧增加显著,两者对水分亏缺的响应较盐分敏感,且可有效缓解沙丘生境由于缺水所造成的氧化损伤,使丙二醛(MDA)含量维持在相对较低水平。过氧化物酶(POD)活性在沙丘和盐渍化生境内都比较高,对抵抗盐渍化和干旱起着同样重要的作用。  相似文献   
3.
The main characteristics of the dominant economic system, including the increasing use of markets and money are described. The global system has expanded trade, including international trade, and production tremendously. While this system has the potential to favour nature conservation, in practice the opposite has occurred. Difficulties raised for conservation of biodiversity by short-term economic crises such as deficits in a country's international payments, the adoption of policies for structural economic adjustment, international capital flows, international loans and foreign aid as well as debt-for-nature swaps are discussed. As explained, it is politically difficult in market economies to support nature conservation at the expense of economic growth and as more economies develop and become market economies this problem spreads. Given global interdependence of nations, an important issue is the distribution of net benefits from biodiversity conservation between developed and less developed countries. Possible distributions of benefits and related issues are discussed. In conclusion, the importance of political lobbying by nature conservation groups in developed market economies is emphasised as a means of ensuring correction of market failures. Unfortunately, no economic system is likely to prove satisfactory in itself in conserving biodiversity so political action by conservationists is always required.  相似文献   
4.
本文用PEG模拟水分亏缺对春小麦红芒麦和绵阳11号胚芽伸长过程中生长、膨压、渗透势、水势和渗透调节能力与ATP含量、能荷变化及能量代谢间的关系进行了研究。结果表明,通过降低能荷,改变分解代谢与合成代谢的比率,使渗透调节物质积累,增加了幼苗的吸水能力,从而使其在一定的ATP能量水平上维持缓慢生长;抗旱品种红芒麦在水分亏缺下成苗速率较快,能保持一定的ATP能量水平和能荷值,渗透调节和吸水能力都比较强。  相似文献   
5.
盐分和水分胁迫对芦荟幼苗渗透调节和渗调物质积累的影响   总被引:31,自引:0,他引:31  
用不同浓度NaCl和等渗聚乙二醇(PEG 6000)处理芦荟(Aloe vera L.)幼苗,10 d后测定叶片相对生长速率和厚度、叶片中主要有机溶质、无机离子含量及渗透调节能力.结果表明,-0.44、-0.88 MPa NaCl和PEG处理使芦荟叶片的相对生长速率和叶片厚度明显下降,且盐胁迫对幼苗生长的抑制和叶片含水量降低的效应明显高于等渗的水分胁迫,其叶片渗透调节能力随处理渗透势的降低而增加, -0.88 MPa PEG胁迫的芦荟幼苗的渗透调节能力高于等渗盐分胁迫.在主要渗透调节物质可溶性糖、有机酸、K 、Ca2 和Cl-中,-0.88 MPa PEG处理下含量比相同渗透势的NaCl处理下显著增加的是有机溶质,因此推断有机溶质含量高是PEG胁迫下渗透调节能力较强的主要因素.  相似文献   
6.
Circadian rhythms control several behaviors through neural networks, hormones and gene expression. One of these outputs in invertebrates, vertebrates and plants is the stress resistance behavior. In this work, we studied the circadian variation in abiotic stress resistance of adult C. elegans as well as the genetic mechanisms that underlie such behavior. Measuring the stress resistance by tap response behavior we found a rhythm in response to osmotic (NaCl LC(50) = 340 mM) and oxidative (H(2)O(2) LC(50) = 50 mM) shocks, with a minimum at ZT0 (i.e., lights off) and ZT12 (lights on), respectively. In addition, the expression of glutathione peroxidase (C11E4.1) and glycerol-3-phosphate dehydrogenase (gpdh-1) (genes related to the control of stress responses) also showed a circadian fluctuation in basal levels with a peak at night. Moreover, in the mutant osr-1 (AM1 strain), a negative regulator of the gpdh-1 pathway, the osmotic resistance rhythms were masked at 350 mM but reappeared when the strain was treated with a higher NaCl concentration. This work demonstrates for the first time that in the adult nematode, C. elegans stress responses vary daily, and provides evidence of an underlying rhythmic gene expression that governs these behaviors.  相似文献   
7.
There is strong evidence that natural selection can favour phenotypic plasticity as a mechanism to maximize fitness in animals. Here, we aim to investigate phenotypic plasticity of a cooperative trait in bacteria – the production of an iron‐scavenging molecule (pyoverdin) by Pseudomonas aeruginosa. Pyoverdin production is metabolically costly to the individual cell, but provides a benefit to the local group and can potentially be exploited by nonpyoverdin‐producing cheats. Here, we subject bacteria to changes in the social environment in media with different iron availabilities and test whether cells can adjust pyoverdin production in response to these changes. We found that pyoverdin production per cell significantly decreased at higher cell densities and increased in the presence of cheats. This phenotypic plasticity significantly influenced the costs and benefits of cooperation. Specifically, the investment of resources into pyoverdin production was reduced in iron‐rich environments and at high cell densities, but increased under iron limitation, and when pyoverdin was exploited by cheats. Our study demonstrates that phenotypic plasticity in a cooperative trait as a response to changes in the environment occurs in even the simplest of organisms, a bacterium.  相似文献   
8.
Understanding the genetic architecture of quantitative traits can greatly assist the design of strategies for their manipulation in plant-breeding programs. For a number of traits, genetic variation can be the result of segregation of a few major genes and many polygenes (minor genes). The joint segregation analysis (JSA) is a maximum-likelihood approach for fitting segregation models through the simultaneous use of phenotypic information from multiple generations. Our objective in this paper was to use computer simulation to quantify the power of the JSA method for testing the mixed-inheritance model for quantitative traits when it was applied to the six basic generations: both parents (P1 and P2), F1, F2, and both backcross generations (B1 and B2) derived from crossing the F1 to each parent. A total of 1968 genetic model-experiment scenarios were considered in the simulation study to quantify the power of the method. Factors that interacted to influence the power of the JSA method to correctly detect genetic models were: (1) whether there were one or two major genes in combination with polygenes, (2) the heritability of the major genes and polygenes, (3) the level of dispersion of the major genes and polygenes between the two parents, and (4) the number of individuals examined in each generation (population size). The greatest levels of power were observed for the genetic models defined with simple inheritance; e.g., the power was greater than 90% for the one major gene model, regardless of the population size and major-gene heritability. Lower levels of power were observed for the genetic models with complex inheritance (major genes and polygenes), low heritability, small population sizes and a large dispersion of favourable genes among the two parents; e.g., the power was less than 5% for the two major-gene model with a heritability value of 0.3 and population sizes of 100 individuals. The JSA methodology was then applied to a previously studied sorghum data-set to investigate the genetic control of the putative drought resistance-trait osmotic adjustment in three crosses. The previous study concluded that there were two major genes segregating for osmotic adjustment in the three crosses. Application of the JSA method resulted in a change in the proposed genetic model. The presence of the two major genes was confirmed with the addition of an unspecified number of polygenes. Received: 18 August 2000 / Accepted: 9 March 2001  相似文献   
9.
The role of three-turgor-related cellular parameters, the osmotic potential ( s), the wall yield stress (Y) and the apparent hydraulic conductivity (L'p), in the initiation of ligh-induced expansion of bean (Phaseolus vulgaris L.) leaves has been determined. Although light causes an increase in the total solute content of leaf cells, the water uptake accompanying growth results in a slight increase in s. Y is about 4 bar; and is unaffected by light. L'p, as calculated from growth rates and isopiestic measurements of leaf water potential, is only slightly greater in rapidly-growing leaves. The turgor pressure of growing cells is lower than that of the controls by about 35%. We conclude that light does not induce cell enlargement in the leaf by altering any of the above parameters, but does so primarily by increasing wall extensibility.Abbreviations and symbols RL red light - WL white light - L'p apparent hydraulic conductivity - OC osmotic concentration - Y wall yield stress - s osmotic potential  相似文献   
10.
Polyethylene glycol (PEG 6000)-induced water deficit causes physiological as well as biochemical changes in plants. The present study reports on the results of such changes in hydroponically grown tomato plants (Lycopersicon esculentum Mill. cv. Nikita). Plants were subjected to moderate and severe levels of water stress (i.e. water potentials in the nutrient solution of- 0.51 and -1.22 MPa, respectively). Water stress markedly affected the parameters of gas exchange. Net photosynthetic rate (Pn) decreased with the induction of water stress. Accordingly, a decrease in the transpiration rate (E) was observed. The ratio of both (Pn/E) resulted in a decrease in water use efficiency. One of the possible reasons for the reduction in Pn is structural damage to the thylakoids, which affects the photosynthetic transport of electrons. This was indicated by an increase in non-photochemical quenching and a reduction in the quantum yield of photosystem Ⅱ. Furthermore, a decrease in both leaf water potential and leaf osmotic potential was observed, which resulted in a significant osmotic adjustment during stress conditions. Analysis of the physiological responses was complemented with a study on changes in proline content. In stressed plants, a 10-fold increase in proline content was detected compared with control plants. It is clear that water stress tolerance is the result of a cumulative action of various physiological and biochemical processes, all of which were affected by PEG 6000-induced water stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号