首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35843篇
  免费   2578篇
  国内免费   834篇
  2023年   607篇
  2022年   556篇
  2021年   902篇
  2020年   1148篇
  2019年   1474篇
  2018年   1300篇
  2017年   930篇
  2016年   923篇
  2015年   1027篇
  2014年   1890篇
  2013年   2365篇
  2012年   1445篇
  2011年   1878篇
  2010年   2161篇
  2009年   1627篇
  2008年   1647篇
  2007年   1819篇
  2006年   1580篇
  2005年   1592篇
  2004年   1573篇
  2003年   1261篇
  2002年   956篇
  2001年   760篇
  2000年   598篇
  1999年   644篇
  1998年   543篇
  1997年   483篇
  1996年   492篇
  1995年   551篇
  1994年   513篇
  1993年   479篇
  1992年   442篇
  1991年   387篇
  1990年   312篇
  1989年   290篇
  1988年   281篇
  1987年   220篇
  1986年   226篇
  1985年   196篇
  1984年   216篇
  1983年   114篇
  1982年   176篇
  1981年   151篇
  1980年   131篇
  1979年   93篇
  1978年   71篇
  1977年   66篇
  1976年   59篇
  1974年   19篇
  1972年   23篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
2.
An excess of cholesterol and/or oxysterols induces apoptosis in macrophages, contributing to the development of advanced atherosclerotic lesions. In foam cells, these sterols are stored in esterified forms, which are hydrolyzed by two enzymes: neutral cholesterol ester hydrolase 1 (Nceh1) and hormone-sensitive lipase (Lipe). A deficiency in either enzyme leads to accelerated growth of atherosclerotic lesions in mice. However, it is poorly understood how the esterification and hydrolysis of sterols are linked to apoptosis. Remarkably, Nceh1-deficient thioglycollate-elicited peritoneal macrophages (TGEMs), but not Lipe-deficient TGEMs, were more susceptible to apoptosis induced by oxysterols, particularly 25-hydroxycholesterol (25-HC), and incubation with 25-HC caused massive accumulation of 25-HC ester in the endoplasmic reticulum (ER) due to its defective hydrolysis, thereby activating ER stress signaling such as induction of CCAAT/enhancer-binding protein-homologous protein (CHOP). These changes were nearly reversed by inhibition of ACAT1. In conclusion, deficiency of Nceh1 augments 25-HC-induced ER stress and subsequent apoptosis in TGEMs. In addition to reducing the cholesteryl ester content of foam cells, Nceh1 may protect against the pro-apoptotic effect of oxysterols and modulate the development of atherosclerosis.  相似文献   
3.
Human mast cells (MCs) contain TG-rich cytoplasmic lipid droplets (LDs) with high arachidonic acid (AA) content. Here, we investigated the functional role of adipose TG lipase (ATGL) in TG hydrolysis and the ensuing release of AA as substrate for eicosanoid generation by activated human primary MCs in culture. Silencing of ATGL in MCs by siRNAs induced the accumulation of neutral lipids in LDs. IgE-dependent activation of MCs triggered the secretion of the two major eicosanoids, prostaglandin D2 (PGD2) and leukotriene C4 (LTC4). The immediate release of PGD2 from the activated MCs was solely dependent on cyclooxygenase (COX) 1, while during the delayed phase of lipid mediator production, the inducible COX-2 also contributed to its release. Importantly, when ATGL-silenced MCs were activated, the secretion of both PGD2 and LTC4 was significantly reduced. Interestingly, the inhibitory effect on the release of LTC4 was even more pronounced in ATGL-silenced MCs than in cytosolic phospholipase A2-silenced MCs. These data show that ATGL hydrolyzes AA-containing TGs present in human MC LDs and define ATGL as a novel regulator of the substrate availability of AA for eicosanoid generation upon MC activation.  相似文献   
4.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is associated with autosomal dominant hypercholesterolemia, a state of elevated levels of LDL (low-density lipoprotein) cholesterol. Autosomal dominant hypercholesterolemia can result in severe implications such as stroke and coronary heart disease. The inhibition of PCSK9 function by therapeutic antibodies that block interaction of PCSK9 with the epidermal growth factor-like repeat A domain of LDL receptor (LDLR) was shown to successfully lower LDL cholesterol levels in clinical studies. Here we present data on the identification, structural and biophysical characterization and in vitro and in vivo pharmacology of a PCSK9 antibody (mAb1). The X-ray structure shows that mAb1 binds the module 1 of the C-terminal domain (CTD) of PCSK9. It blocks access to an area bearing several naturally occurring gain-of-function and loss-of-function mutations. Although the antibody does not inhibit binding of PCSK9 to epidermal growth factor-like repeat A, it partially reverses PCSK9-induced reduction of the LDLR and LDL cholesterol uptake in a cellular assay. mAb1 is also effective in lowering serum levels of LDL cholesterol in cynomolgus monkeys in vivo. Complete loss of PCSK9 is associated with insufficient liver regeneration and increased risk of hepatitis C infections. Blocking of the CTD is sufficient to partially inhibit PCSK9 function. Antibodies binding the CTD of PCSK9 may thus be advantageous in patients that do not tolerate complete inhibition of PCSK9.  相似文献   
5.
Intraplantar injection of 0.4% formalin into the rat hind paw leads to a biphasic nociceptive response; an ‘acute’ phase (0–15 min) and ‘tonic’ phase (16–120 min), which is accompanied by significant phosphorylation of extracellular signal‐regulated kinase (ERK)1/2 in the contralateral striatum at 120 min post‐formalin injection. To uncover a possible relationship between the slow‐onset substance P (SP) release and increased ERK1/2 phosphorylation in the striatum, continuous infusion of SP into the striatum by reverse microdialysis (0.4 μg/mL in microdialysis fiber, 1 μL/min) was performed to mimic volume neurotransmission of SP. Continuous infusion for 3 h of SP reduced the duration of ‘tonic’ phase nociception, and this SP effect was mediated by neurokinin 1 (NK1) receptors since pre‐treatment with NK1 receptor antagonist CP96345 (10 μM) blocked the effect of SP infusion. However, formalin‐induced ‘tonic’ phase nociception was significantly prolonged following acute injection of the MAP/ERK kinase 1/2 inhibitor PD0325901 (100 pmol) by microinjection. The coinfusion of SP and PD0325901 significantly increased the ‘tonic’ phase of nociception. These data demonstrate that volume transmission of striatal SP triggered by peripheral nociceptive stimulation does not lead to pain facilitation but a significant decrease of tonic nociception by the activation of the SP‐NK1 receptor–ERK1/2 system.

  相似文献   

6.
Hepatic lipid metabolism is controlled by integrated metabolic pathways. Excess accumulation of hepatic TG is a hallmark of nonalcoholic fatty liver disease, which is associated with obesity and insulin resistance. Here, we show that KH-type splicing regulatory protein (KSRP) ablation reduces hepatic TG levels and diet-induced hepatosteatosis. Expression of period 2 (Per2) is increased during the dark period, and circadian oscillations of several core clock genes are altered with a delayed phase in Ksrp−/− livers. Diurnal expression of some lipid metabolism genes is also disturbed with reduced expression of genes involved in de novo lipogenesis. Using primary hepatocytes, we demonstrate that KSRP promotes decay of Per2 mRNA through an RNA-protein interaction and show that increased Per2 expression is responsible for the phase delay in cycling of several clock genes in the absence of KSRP. Similar to Ksrp−/− livers, both expression of lipogenic genes and intracellular TG levels are also reduced in Ksrp−/− hepatocytes due to increased Per2 expression. Using heterologous mRNA reporters, we show that the AU-rich element-containing 3′ untranslated region of Per2 is responsible for KSRP-dependent mRNA decay. These findings implicate that KSRP is an important regulator of circadian expression of lipid metabolism genes in the liver likely through controlling Per2 mRNA stability.  相似文献   
7.
Palmitic acid (PA) is associated with higher blood concentrations of medium-chain acylcarnitines (MCACs), and we hypothesized that PA may inhibit progression of FA β-oxidation. Using a cross-over design, 17 adults were fed high PA (HPA) and low PA/high oleic acid (HOA) diets, each for 3 weeks. The [1-13C]PA and [13-13C]PA tracers were administered with food in random order with each diet, and we assessed PA oxidation (PA OX) and serum AC concentration to determine whether a higher PA intake promoted incomplete PA OX. Dietary PA was completely oxidized during the HOA diet, but only about 40% was oxidized during the HPA diet. The [13-13C]PA/[1-13C]PA ratio of PA OX had an approximate value of 1.0 for either diet, but the ratio of the serum concentrations of MCACs to long-chain ACs (LCACs) was significantly higher during the HPA diet. Thus, direct measurement of PA OX did not confirm that the HPA diet caused incomplete PA OX, despite the modest, but statistically significant, increase in the ratio of MCACs to LCACs in blood.  相似文献   
8.
目的:筛选能高特异性、高亲和力结合RANKL蛋白并有效抑制RANKL对破骨细胞诱导分化作用的DNA适配子。方法:首先,采用原核系统表达并纯化RANKL蛋白,通过SELEX(Systematic evolution of ligands by exponential)技术从人工合成的单链随机寡核苷酸文库中筛选能高特异性、高亲和力结合RANKL蛋白的DNA适配子。然后,用RNAfolding sever software分析适配子空间结构,以ELISA检测DNA适配子和RANKL亲和力大小并筛选出亲和力最高的一组DNA适配子用以验证DNA适配子对RANKL诱导破骨细胞分化的抑制作用。结果:(1)成功在原核系统表达并纯化RANKL蛋白;(2)筛选出能高特异性、高亲和力结合RANKL蛋白的12个DNA适配子。(3)与对照组相比,不同浓度DNA适配子能明显抑制TRAP阳性破骨细胞数量(P0.05),且浓度越高抑制效果越明显。结论:成功筛选出的DNA适配子能特异性结合RANKL蛋白并有效抑制RANKL对破骨细胞的诱导分化功能。  相似文献   
9.
10.
Duchenne muscular dystrophy (DMD) is a lethal X-inherited disease caused by dystrophin deficiency. Besides the relatively well characterized skeletal muscle degenerative processes, DMD is also associated with a dilated cardiomyopathy that leads to progressive heart failure at the end of the second decade. The aim of the present study was to characterize the diastolic Ca2+ concentration ([Ca2+]d) and diastolic Na+ concentration ([Na+]d) abnormalities in cardiomyocytes isolated from 3-, 6-, 9-, and 12-month old mdx mice using ion-selective microelectrodes. In addition, the contributions of gadolinium (Gd3+)-sensitive Ca2+ entry and inositol triphosphate (IP3) signaling pathways in abnormal [Ca2+]d and [Na+]d were investigated. Our results showed an age-dependent increase in both [Ca2+]d and [Na+]d in dystrophic cardiomyocytes compared to those isolated from age-matched wt mice. Gd3+ treatment significantly reduced both [Ca2+]d and [Na+]d at all ages. In addition, blockade of the IP3-pathway with either U-73122 or xestospongin C significantly reduced ion concentrations in dystrophic cardiomyocytes. Co-treatment with U-73122 and Gd3+ normalized both [Ca2+]d and [Na+]d at all ages in dystrophic cardiomyocytes. These data showed that loss of dystrophin in mdx cardiomyocytes produced an age-dependent intracellular Ca2+ and Na+ overload mediated at least in part by enhanced Ca2+ entry through Gd3+ sensitive transient receptor potential channels (TRPC), and by IP3 receptors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号