首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2248篇
  免费   206篇
  国内免费   273篇
  2024年   3篇
  2023年   42篇
  2022年   23篇
  2021年   34篇
  2020年   54篇
  2019年   57篇
  2018年   57篇
  2017年   61篇
  2016年   57篇
  2015年   75篇
  2014年   84篇
  2013年   112篇
  2012年   58篇
  2011年   99篇
  2010年   64篇
  2009年   146篇
  2008年   135篇
  2007年   151篇
  2006年   146篇
  2005年   118篇
  2004年   130篇
  2003年   99篇
  2002年   77篇
  2001年   58篇
  2000年   51篇
  1999年   69篇
  1998年   64篇
  1997年   46篇
  1996年   49篇
  1995年   57篇
  1994年   51篇
  1993年   44篇
  1992年   49篇
  1991年   24篇
  1990年   38篇
  1989年   35篇
  1988年   35篇
  1987年   22篇
  1986年   24篇
  1985年   29篇
  1984年   21篇
  1983年   9篇
  1982年   16篇
  1981年   13篇
  1980年   15篇
  1979年   14篇
  1978年   6篇
  1977年   3篇
  1976年   3篇
排序方式: 共有2727条查询结果,搜索用时 15 毫秒
1.
Ribosomal (r)RNA and rDNA have been golden molecular markers in microbial ecology. However, it remains poorly understood how ribotype copy number (CN)‐based characteristics are linked with diversity, abundance, and activity of protist populations and communities observed at organismal levels. Here, we applied a single‐cell approach to quantify ribotype CNs in two ciliate species reared at different temperatures. We found that in actively growing cells, the per‐cell rDNA and rRNA CNs scaled with cell volume (CV) to 0.44 and 0.58 powers, respectively. The modeled rDNA and rRNA concentrations thus appear to be much higher in smaller than in larger cells. The observed rRNA:rDNA ratio scaled with CV0.14. The maximum growth rate could be well predicted by a combination of per‐cell ribotype CN and temperature. Our empirical data and modeling on single‐cell ribotype scaling are in agreement with both the metabolic theory of ecology and the growth rate hypothesis, providing a quantitative framework for linking cellular rDNA and rRNA CNs with body size, growth (activity), and biomass stoichiometry. This study also demonstrates that the expression rate of rRNA genes is constrained by cell size, and favors biomass rather than abundance‐based interpretation of quantitative ribotype data in population and community ecology of protists.  相似文献   
2.
Nitrogen (N) resorption from senescing leaves is an important mechanism of N conservation for terrestrial plant species, but changes in N-resorption traits over wide-range and multi-level N addition gradients have not been well characterized. Here, a 3-year N addition experiment was conducted to determine the effects of N addition on N resorption of six temperate grassland species belonging to three different life-forms: Stipa krylovii Roshev. (grass), Cleistogenes squarrosa (T.) Keng (grass), Artemisia frigida Willd. (semishrub), Melissitus ruthenica C.W.Wang (semishrub and N-fixer), Potentilla acaulis L. (forb) and Allium bidentatum Fisch.ex Prokh. (forb). Generally, N concentrations in green leaves increased asymptotically for all species. N concentrations in senescent leaves for most species (5/6) also increased asymptotically, except that the N concentration in senescent leaves of A. bidentatum was independent of N addition. N-resorption efficiency decreased with increasing N addition level only for S. krylovii and A. frigida, while no clear responses were found for other species. These results suggest that long-term N fertilization increased N uptake and decreased N-resorption proficiency, but the effects on N-resorption efficiency were species-specific for different temperate grassland species in northern China. These inter-specific differences in N resorption may influence the positive feedback between species dominance and N availability and thus soil N cycling in the grassland ecosystem in this region.  相似文献   
3.
南昌市不同植物类群叶片氮磷浓度及其化学计量比   总被引:11,自引:2,他引:9  
对南昌大学前湖校区89种主要植物叶片的N、P浓度及其化学计量比进行了研究,结果表明:乔灌、常绿、针叶、种子、裸子和单子叶植物类群的N浓度分别低于相对应的草本、落叶、阔叶、蕨类、被子和双子叶植物类群,而C3和C4植物差异不显著;乔灌、常绿和裸子植物类群的P浓度含量分别低于相对应的草本、落叶和被子植物类群,而针叶和阔叶、蕨类和种子、单子叶和双子叶、C3和C4植物类群间差异不显著;乔木、阔叶、被子和双子叶植物类群叶片N/P分别高于相对应的灌草、针叶、裸子和单子叶植物类群,而常绿和落叶、蕨类和种子、C3和C4植物类群之间差异不显著.可见,不同类型植物对N和P的吸收利用存在差异,且对不同养分供应采取不同的适应对策.结合研究区土壤养分现状,建议优先选择常绿、针叶、裸子和单子叶植物类群作为城市园林植物.  相似文献   
4.
The disruption of the coral–algae symbiosis (coral bleaching) due to rising sea surface temperatures has become an unprecedented global threat to coral reefs. Despite decades of research, our ability to manage mass bleaching events remains hampered by an incomplete mechanistic understanding of the processes involved. In this study, we induced a coral bleaching phenotype in the absence of heat and light stress by adding sugars. The sugar addition resulted in coral symbiotic breakdown accompanied by a fourfold increase of coral‐associated microbial nitrogen fixation. Concomitantly, increased N:P ratios by the coral host and algal symbionts suggest excess availability of nitrogen and a disruption of the nitrogen limitation within the coral holobiont. As nitrogen fixation is similarly stimulated in ocean warming scenarios, here we propose a refined coral bleaching model integrating the cascading effects of stimulated microbial nitrogen fixation. This model highlights the putative role of nitrogen‐fixing microbes in coral holobiont functioning and breakdown.  相似文献   
5.
The microbial metabolism of organic matter (OM) in seagrass beds can create sulfidic conditions detrimental to seagrass growth; iron (Fe) potentially has ameliorating effects through titration of the sulfides and the precipitation of iron-sulfide minerals into the sediment. In this study, the biogeochemical effects of Fe availability and its interplay with sulfur and OM on sulfide toxicity, phosphorous (P) availability, seagrass growth and community structure were tested. The availability of Fe and OM was manipulated in a 2 × 2 factorial experiment arranged in a Latin square, with four replicates per treatment. The treatments included the addition of Fe, the addition of OM, the addition of both Fe and OM as well as no addition. The experiment was conducted in an oligotrophic, iron-deficient seagrass bed. Fe had an 84.5% retention efficiency in the sediments with the concentration of Fe increasing in the seagrass leaves over the course of the experiment. Porewater chemistry was significantly altered with a dramatic decrease in sulfide levels in Fe addition plots while sulfide levels increased in the OM addition treatments. Phosphorus increased in seagrass leaves collected in the Fe addition plots. Decreased sulfide stress was evidenced by heavier δ34S in leaves and rhizomes from plots to which Fe was added. The OM addition negatively affected seagrass growth but increased P availability; the reduced sulfide stress in Fe added plots resulted in elevated productivity. Fe availability may be an important determinant of the impact that OM has on seagrass vitality in carbonate sediments vegetated with seagrasses.  相似文献   
6.
A winter bloom dominated by Pseudo-nitzschia calliantha Lundholm, Moestrup et Hasle (Bacillariophyceae), a potential domoic acid producer, is reported for the first time in the Aegean Sea, Greece, in a semi-enclosed embayment (Kalloni Gulf) surrounded by agricultural land and drained by intermittent rivers. Abundances of this species in the inner part of the Gulf during February were extremely high (max 1.1 × 107 cells l−1). The species Alexandrium insuetum Balech (Dinophyceae) was also found in considerable cell numbers (max 1.4 × 105 cells l−1) during the bloom and reached up to 40% of the total biovolume. This study demonstrates an evident cause and effect relationship between nutrient inflows originating from agricultural activities in the watershed and the development of a potential HAB. The massive bloom formation was observed soon after an episodic rainfall event during the fertilizer application period (December to February). A bloom was also observed the following year, but it was less pronounced due to the fact that rainfalls were more evenly spaced in time and were of moderate intensity.  相似文献   
7.
The mouse is a valuable model organism for biomedical research. Here, we established a comprehensive spectral library and the data-independent acquisition–based quantitative proteome maps for 41 mouse organs, including some rarely reported organs such as the cornea, retina, and nine paired organs. The mouse spectral library contained 178,304 peptides from 12,320 proteins, including 1678 proteins not reported in previous mouse spectral libraries. Our data suggested that organs from the nervous system and immune system expressed the most distinct proteome compared with other organs. We also found characteristic protein expression of immune-privileged organs, which may help understanding possible immune rejection after organ transplantation. Each tissue type expressed characteristic high-abundance proteins related to its physiological functions. We also uncovered some tissue-specific proteins which have not been reported previously. The testis expressed highest number of tissue-specific proteins. By comparison of nine paired organs including kidneys, testes, and adrenal glands, we found left organs exhibited higher levels of antioxidant enzymes. We also observed expression asymmetry for proteins related to the apoptotic process, tumor suppression, and organ functions between the left and right sides. This study provides a comprehensive spectral library and a quantitative proteome resource for mouse studies.  相似文献   
8.
Paradoxically low nitrogen resorption efficiency in the drought-deciduous desert shrub Fouquieria splendens Engelm (ocotillo) triggered tests of the hypotheses that resorption is often low in this species and that resorption is influenced by zinc. Resorption efficiency and proficiency were measured in 1989 and 1994 at two sites in the Chihuahuan Desert in plants to which zinc, or zinc and nitrogen were added. Resorption of nitrogen, phosphorus, and zinc in unfertilized plants varied temporally and spatially, but was both efficient (66%, 49%, and 40%, respectively) and proficient (0.55%, 0.09%, and 9.4 μg g−1, respectively) as determined by comparison to worldwide resorption patterns in a wide variety of other species. Applications of zinc had no significant effect on the resorption of nitrogen and phosphorus, but did influence the resorption of zinc. Resorption of zinc was significantly less efficient in zinc-treated plants than controls at only one of the two sites in one of the 2 years, yet resorption of zinc was significantly less proficient in zinc-treated plants than controls in both years and at both sites. This pattern of zinc resorption adds insight into the continuing debate regarding the relationship between fertility and resorption because the data used to fuel the debate have almost exclusively described macronutrients, not trace metals. The high variability in resorption among individuals, sites, and years observed for F. splendens may well be an attribute of many desert-dwelling, drought-deciduous plants. When senescence is controlled primarily by water availability rather than photoperiod, especially in a landscape characterized by unpredictable amounts and timing of precipitation, high variability in associated processes such as resorption may be inevitable.  相似文献   
9.
We have measured the uptake capacity of nitrogen (N) and potassium (K) from different soil depths by injecting 15N and caesium (Cs; as an analogue to K) at 5 and 50 cm soil depth and analysing the recovery of these markers in foliage and buds. The study was performed in monocultures of 40-year-old pedunculate oak (Quercus robur), European beech (Fagus sylvatica) and Norway spruce (Picea abies (L.) Karst.) located at an experimental site in Palsgård, Denmark. The markers were injected as a solution through plastic tubes around 20 trees of each species at either 5 or 50 cm soil depth in June 2003. After 65 days foliage and buds were harvested and the concentrations of 15N and Cs analysed. The recovery of 15N in the foliage and buds tended to be higher from 5 than 50 cm soil depth in oak whereas they where similar in spruce and beech after compensation for differences in immobilization of 15N in the soil. In oak more Cs was recovered from 5 than from 50 cm soil depth whereas in beech and spruce no difference could be detected. Out of the three investigated tree species, oak was found to have the lowest capacity to take up Cs at 50 cm soil depth compared to 5 cm soil depth also after compensating for differences in discrimination against Cs by the roots. The uptake capacity from 50 cm soil depth compared with 5 cm was higher than expected from the root distribution except for K in oak, which can probably be explained by a considerable overlap of the uptake zones around the roots and mycorrhizal hyphae in the topsoil. The study also shows that fine roots at different soil depths with different physiological properties can influence the nutrient uptake of trees. Estimates of fine root distribution alone may thus not reflect the nutrient uptake capacity of trees with sufficient accuracy. Our study shows that deep-rooted trees such as oak may have lower nutrient uptake capacity at deeper soil layers than more shallow-rooted trees such as spruce, as we found no evidence that deep-rooted trees obtained proportionally more nutrients from deeper soil layers. This has implications for models of nutrient cycling in forest ecosystems that use the distribution of roots as the sole criterion for predicting uptake of nutrients from different soil depths.  相似文献   
10.
In order to study the effects of temperature enhancement on alpine calcareous grassland species, a warming experiment was carried out in the Berchtesgaden National Park (Southeast Germany, Northern Calcareous Alps) between 2002 and 2004. The study was conducted in stands of the Carex sempervirens and the Carex firma communities; the two most widespread grassland types in the alpine zone of the Northern Calcareous Alps. The temperature of the vegetation stand and the upper soil was passively enhanced using open top chambers (OTCs). The construction of the OTCs was appropriate since temperature was clearly increased while water conditions (humidity, soil water content) were not changed.

By comparing manipulated (temperature enhancement) with non-manipulated plots, the effects of warming on growth and reproduction of selected key species were studied. To test if vegetation response to temperature enhancement is at least partly due to increases in nutrient availability, soil solution concentrations of nitrate and ammonium were analysed.

We found that most of the studied plant species are sensitive to temperature enhancement. Growth and/or reproduction of 12 of the 14 studied species were significantly stimulated by warming. Only two species showed no response; none of the species experienced decreases in growth or reproduction. Dwarf shrubs and graminoids showed a stronger response than herbaceous perennials. A significant effect of warming on nutrient availability could not be detected. The observed response of vegetation is therefore mainly caused by direct and not by indirect temperature effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号