首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3489篇
  免费   83篇
  国内免费   34篇
  2023年   19篇
  2022年   21篇
  2021年   41篇
  2020年   47篇
  2019年   50篇
  2018年   70篇
  2017年   33篇
  2016年   32篇
  2015年   91篇
  2014年   246篇
  2013年   190篇
  2012年   197篇
  2011年   278篇
  2010年   209篇
  2009年   168篇
  2008年   182篇
  2007年   160篇
  2006年   185篇
  2005年   158篇
  2004年   162篇
  2003年   142篇
  2002年   86篇
  2001年   29篇
  2000年   70篇
  1999年   62篇
  1998年   49篇
  1997年   45篇
  1996年   51篇
  1995年   53篇
  1994年   48篇
  1993年   53篇
  1992年   47篇
  1991年   35篇
  1990年   35篇
  1989年   23篇
  1988年   22篇
  1987年   21篇
  1986年   19篇
  1985年   23篇
  1984年   24篇
  1983年   8篇
  1982年   26篇
  1981年   14篇
  1980年   22篇
  1979年   15篇
  1978年   7篇
  1976年   9篇
  1972年   5篇
  1971年   6篇
  1970年   5篇
排序方式: 共有3606条查询结果,搜索用时 15 毫秒
1.

Background

The study of nuclear architecture using Chromosome Conformation Capture (3C) technologies is a novel frontier in biology. With further reduction in sequencing costs, the potential of Hi-C in describing nuclear architecture as a phenotype is only about to unfold. To use Hi-C for phenotypic comparisons among different cell types, conditions, or genetic backgrounds, Hi-C data processing needs to be more accessible to biologists.

Results

HiCdat provides a simple graphical user interface for data pre-processing and a collection of higher-level data analysis tools implemented in R. Data pre-processing also supports a wide range of additional data types required for in-depth analysis of the Hi-C data (e.g. RNA-Seq, ChIP-Seq, and BS-Seq).

Conclusions

HiCdat is easy-to-use and provides solutions starting from aligned reads up to in-depth analyses. Importantly, HiCdat is focussed on the analysis of larger structural features of chromosomes, their correlation to genomic and epigenomic features, and on comparative studies. It uses simple input and output formats and can therefore easily be integrated into existing workflows or combined with alternative tools.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0678-x) contains supplementary material, which is available to authorized users.  相似文献   
2.
Double-strand breaks (DSBs) are among the most lethal DNA lesions, and a variety of pathways have evolved to manage their repair in a timely fashion. One such pathway is homologous recombination (HR), in which information from an undamaged donor site is used as a template for repair. Although many of the biochemical steps of HR are known, the physical movements of chromosomes that must underlie the pairing of homologous sequence during mitotic DSB repair have remained mysterious. Recently, several groups have begun to use a variety of genetic and cell biological tools to study this important question. These studies reveal that both damaged and undamaged loci increase the volume of the nuclear space that they explore after the formation of DSBs. This DSB-induced increase in chromosomal mobility is regulated by many of the same factors that are important during HR, such as ATR-dependent checkpoint activation and the recombinase Rad51, suggesting that this phenomenon may facilitate the search for homology. In this perspective, we review current research into the mobility of chromosomal loci during HR, as well as possible underlying mechanisms, and discuss the critical questions that remain to be answered. Although we focus primarily on recent studies in the budding yeast, Saccharomyces cerevisiae, examples of experiments performed in higher eukaryotes are also included, which reveal that increased mobility of damaged loci is a process conserved throughout evolution.  相似文献   
3.
4.
We have developed a series of orally efficacious IRAK4 inhibitors, based on a scaffold hopping strategy and using rational structure based design. Efforts to tackle low permeability and high efflux in our previously reported pyrrolopyrimidine series (Scott et al., 2017) led to the identification of pyrrolotriazines which contained one less formal hydrogen bond donor and were intrinsically more lipophilic. Further optimisation of substituents on this pyrrolotriazine core culminated with the discovery of 30 as a promising in vivo probe to assess the potential of IRAK4 inhibition for the treatment of MyD88 mutant DLBCL in combination with a BTK inhibitor. When tested in an ABC-DLBCL model with a dual MyD88/CD79 mutation (OCI-LY10), 30 demonstrated tumour regressions in combination with ibrutinib.  相似文献   
5.
The bacterium Azotobacter vinelandii produces a family of seven secreted and calcium-dependent mannuronan C-5 epimerases (AlgE1–7). These epimerases are responsible for the epimerization of β-d-mannuronic acid (M) to α-l-guluronic acid (G) in alginate polymers. The epimerases display a modular structure composed of one or two catalytic A-modules and from one to seven R-modules having an activating effect on the A-module. In this study, we have determined the NMR structure of the three individual R-modules from AlgE6 (AR1R2R3) and the overall structure of both AlgE4 (AR) and AlgE6 using small angle x-ray scattering. Furthermore, the alginate binding ability of the R-modules of AlgE4 and AlgE6 has been studied with NMR and isothermal titration calorimetry. The AlgE6 R-modules fold into an elongated parallel β-roll with a shallow, positively charged groove across the module. Small angle x-ray scattering analyses of AlgE4 and AlgE6 show an overall elongated shape with some degree of flexibility between the modules for both enzymes. Titration of the R-modules with defined alginate oligomers shows strong interaction between AlgE4R and both oligo-M and MG, whereas no interaction was detected between these oligomers and the individual R-modules from AlgE6. A combination of all three R-modules from AlgE6 shows weak interaction with long M-oligomers. Exchanging the R-modules between AlgE4 and AlgE6 resulted in a novel epimerase called AlgE64 with increased G-block forming ability compared with AlgE6.  相似文献   
6.
7.
8.
9.
When eight cultivars of Capsicum annuum were used as female parents in interspecific crosses with two accessions of C. chinense, dwarfism occurred in hybrids originating from 10 out of 16 combinations, while hybrids of the remaining 6 combinations grew normally. In contrast, when C. chinense was used as female parent, all of the hybrids showed severely stunted growth as if affected by a virus. These results suggested that the stunted growth expressed in the cross of C. chinense x C. annuum is caused by an interaction between nuclear gene(s) from C. annuum and the cytoplasm of C. chinense. To examine the number of nuclear gene(s) which cause(s) the stunted growth, we backcrossed F1 hybrids of C. annuum x C. chinense to C. chinense. About one-quarter of the progeny in the backcrossed hybrids of C. chinense x (C. annuum x C. chinense) showed the same stunted growth shown by the f1 hybrids of C. chinense x C. annuum, suggesting that two complementary genes of C. annuum cause the stunted growth. However, the higher abortion rates of ovules and lower germination percentage of seeds in C. chinense x C. annuum than in the selfed C. chinense implied that the genetic ratio of the stunted type would have been higher than that observed in the C. chinense x (C. annuum x C. chinense) progeny. We then attempted a linkage analysis between the stunted growth and randomly amplified polymorphic DNA (RAPD) of C. chinense x (C. annuum x C. chinense) progeny. A RAPD marker that associated with 94% of the stunted plants but not with 94% of the normal one was identified. This confirmed that a single nuclear gene of C. annuum which is linked to the RAPD marker with a recombination value of 6% causes the stunted growth in an interaction with the cytoplasm of C. chinense.  相似文献   
10.
N-Methylpyrrolidone is a solvent molecule which has been shown to compete with acetyl-lysine-containing peptides for binding to bromodomains. From crystallographic studies, it has also been shown to closely mimic the acetamide binding motif in several bromodomains, but has not yet been directly pursued as a fragment in bromodomain inhibition. In this paper, we report the elaboration of N-methylpyrrolidone as a potential lead in fragment-based drug design. Firstly, N-methylpyrrolidone was functionalised to provide points for chemical elaboration. Then, the moiety was incorporated into analogues of the reported bromodomain inhibitor, Olinone. X-ray crystallography revealed that the modified analogues showed comparable binding affinity and structural mimicry to Olinone in the bromodomain binding site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号