首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2006年   4篇
  2005年   1篇
  2003年   2篇
  2000年   1篇
排序方式: 共有11条查询结果,搜索用时 78 毫秒
1.
The Oregon Coast Range, rich in natural resources, is under increasing pressure from rapid development. The purpose of this study was to examine diatom species patterns in relation to environmental variables in streams of this region. Diatoms, water quality, physical habitat and watershed characteristics were assessed for 33 randomly selected stream sites. Watershed size, elevation, geology, vegetation and stream morphology varied substantially among sites. Streams were characterized by dilute water chemistry and a low percent of fine substrate. A total of 80 diatom taxa were identified. Taxa richness was low throughout the region (median 15, range 10–26). Assemblages were dominated by two adnate species, Achnanthidium minutissimum and Achnanthes pyrenaicum. Diatoms sensitive to organic pollution dominated the assemblages at all sites (median 85%). Non-metric multidimensional scaling (NMDS) and correlational analysis showed quantitative relationships between diatom assemblages and environmental variables. NMDS axes were significantly correlated with watershed area, watershed geology, conductivity, total nitrogen, total solids and stream width. Diatom-based site classification (Two-way Indicators Species Analysis, (TWINSPAN)) yielded 4 discrete groups that displayed weak correlations with environmental variables. When stream sites were classified by dominant watershed geology, overall diatom assemblages between groups were significantly different (Analysis of Similarity (ANOSIM) global R = 0.19, p < 0.05). Our results suggest that streams in the coastal region are in relatively good condition. High natural variability in stream conditions in the Oregon Coast Range ecoregion may obscure quantitative relationships between environmental variables and diatom assemblages. A bioassessment protocol that classifies sites by major landscape variables and selects streams along the major human disturbance gradient might allow for detection of early signs of human disturbance in environmentally heterogeneous regions, such as the Pacific Northwest.  相似文献
2.
Our understanding of fish feeding interactions at Tijuana Estuary was improved by incorporating estimates of spatial and temporal variability into diet analyses. We examined the stomach contents of 7 dominant species (n=579 total fish) collected between 1994 and 1999. General feeding patterns pooled over time produced a basic food web consisting of 3 major trophic levels: (1) primary consumers (Atherinops affinis, Mugil cephalus) that ingested substantial amounts of plant material and detritus; (2) benthic carnivores (Clevelandia ios, Hypsopsetta guttulata, Gillichthys mirabilis, and Fundulus parvipinnis) that ingested high numbers of calanoid copepods and exotic amphipods (Grandidierella japonica); and (3) piscivores (Paralichthys californicus and Leptocottus armatus) that often preyed on smaller gobiids. Similarity-based groupings of individual species' diets were identified using nonmetric multidimensional scaling to characterize their variability within and between species, and in space and time. This allowed us identify major dietary shifts and recognize events (i.e., modified prey abundance during 1997–98 El Ni no floods) that likely caused these shifts.  相似文献
3.
4.
Shifts in bacterial and archaeal communities, associated with changes in chemical profiles, were investigated in an anaerobic batch reactor treating dairy-processing wastewater prepared with whey permeate powder. The dynamics of bacterial and archaeal populations were monitored by quantitative real-time PCR and showed good agreement with the process data. A rapid increase in bacterial populations and a high rate of substrate fermentation were observed during the initial period. Growth and regrowth of archaeal populations occurred with biphasic production of methane, corresponding to the diauxic consumption of acetate and propionate. Bacterial community structure was examined by denaturing gel gradient electrophoresis (DGGE) targeting 16S rRNA genes. An Aeromonas -like organism was suggested to be mainly responsible for the rapid fermentation of carbohydrate during the initial period. Several band sequences closely related to the Clostridium species, capable of carbohydrate fermentation, lactate or ethanol fermentation, and/or homoacetogenesis, were also detected. Statistical analyses of the DGGE profiles showed that the bacterial community structure, as well as the process performance, varied with the incubation time. Our results demonstrated that the bacterial community shifted, reflecting the performance changes and, particularly, that a significant community shift corresponded to a considerable process event. This suggested that the diagnosis of an anaerobic digestion process could be possible by monitoring bacterial community shifts.  相似文献
5.
The spatial and temporal distributions of the epiphytic diatom flora on Thalassia testudinum was described within the Florida Bay estuary and at one Atlantic site east of the Florida Keys over a 1-year period. Species of the genus Mastogloia dominated the epiphytic diatom flora (82 out of 332 total species). Nonmetric Multidimensional Scaling (NMDS) and Analysis of Similarity (ANOSIM) revealed four distinct spatial assemblages and two temporal assemblages. Eastern and western Florida Bay assemblages were identified within the estuary. The eastern diatom assemblage was characterized by high relative abundances of Brachysira aponina and Nitzschia liebetruthii, while the western assemblage was characterized by the abundance of Reimerothrix floridensis, particularly during summer. Two diverse and distinct marine assemblages, one located in the Gulf of Mexico along the western edge of Florida Bay and the other behind the Florida reef tract in the Atlantic Ocean, were also identified. Analysis of the spatial distribution of diatoms and water quality characteristics within Florida Bay suggest that these assemblages may be structured by salinity and nutrient availability, particularly P. The Gulf of Mexico and the western Florida Bay assemblages were associated with higher water column salinities and TP concentrations and lower DIN concentrations and TN:TP ratios relative to the eastern Florida Bay assemblage. The temporal variation in diatom assemblages was associated with water temperature, though temporal indicator species were few relative to the number of spatial indicators. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献
6.
Exotic plants establish persistent communities   总被引:1,自引:0,他引:1  
Many exotic plants utilize early successional traits to invade disturbed sites, but in some cases these same species appear able to prevent re-establishment of late-successional and native species. Between 2002 and 2004, I studied 25 fields that represent a 52-year chronosequence of agricultural abandonment in a shrub-steppe ecosystem in Washington State, USA, to determine if exotic plants behaved as early successional species (i.e., became less abundant over time) or if they established persistent communities. Exotics maintained dominance in tilled (73% of total cover) relative to never-tilled (6% of total cover) fields throughout the chronosequence. Exotic community composition, however, changed on annual and decadal timescales. Changes in exotic community composition did not reflect typical successional patterns. For example, some exotic perennial species (e.g., Centaurea diffusa and Medicago sativa) were less common and some exotic annual species (e.g., Sissymbrium loeselii and S. altissimum) were more common in older relative to younger fields. Exotics in the study area appeared to establish communities that are resistant to re-invasion by natives, resilient to losses of individual exotic species, and as a result, maintain total exotic cover over both the short- and long-term: exotics replaced exotics. Exotics did not invade native communities and natives did not invade exotic communities across the chronosequence. These results suggest that, in disturbed sites, exotic plants establish an alternative community type that while widely variable in composition, maintains total cover over annual and decadal timescales. Identifying alternative state exotic communities and the mechanisms that explain their growth is likely to be essential for native plant restoration.  相似文献
7.
This study determined the relative influences of environmental variation versus spatial autocorrelation on benthic macroinvertebrate community composition of temperate headwater streams. We enumerated fauna in riffle zones of 23 separate (i.e., not tributaries to each other) but closely grouped from first- to third-order woodland streams surrounding Zoar Valley Canyon, western New York State, USA, during spring, summer, and fall of 2006. Watershed geomorphology (stream order, catchment area, and forest cover) and semi-quantitative habitat characteristics, the latter of which were incorporated into a Qualitative Habitat Evaluation Index (QHEI), were also recorded for each stream. Non-metric Multidimensional Scaling (NMDS) ordination was used to establish patterns of biotic similarity among these streams. Matrices of biological and environmental Euclidean distances were constructed for all between-stream pairings. Additionally, a between-stream spatial matrix was constructed based on global position system coordinates of sampling sites. Non-significant partial Mantel coefficients indicated that biological distances were uncorrelated with spatial distances both among all 23 study streams and among 12 first-order streams only. In contrast, biological distances were positively correlated with environmental distances (r M = 0.375 and 0.289 for all streams and for first-order streams only, respectively; P values < 0.05). Environmental and spatial distances were uncorrelated (partial Mantel P values > 0.05), indicating that the measured environmental characteristics were not spatially structured. Each of the geomorphological and habitat variables was statistically associated with NMDS community composition axes (stepwise multiple regression, one-factor MANOVA). These results suggest that environmental filters and niche-based species sorting may operate here between separate streams, and that study sites appear to be effectively insular in their biota despite close physical proximity. Handling editor: Sonja Stendera  相似文献
8.
Identifying factors that cause genetic differentiation in plant populations and the spatial scale at which genetic structuring can be detected will help to understand plant population dynamics and identify conservation units. In this study, we determined the genetic structure and diversity of Pterocarpus officinalis, a widespread tropical wetland tree, at three spatial scales: (1) drainage basin “watershed” (<10 km), (2) within Puerto Rico (<100 km), and (3) Caribbean-wide (>1000 km) using AFLP. At all three spatial scales, most of the genetic variation occurred within populations, but as the spatial scale increased from the watershed to the Caribbean region, there was an increase in the among population variation (ΦST=0.19 to ΦST=0.53). At the watershed scale, there was no significant differentiation (P=0.77) among populations in the different watersheds, although there was some evidence that montane and coastal populations differed (P<0.01). At the island scale, there was significant differentiation (P<0.001) among four populations in Puerto Rico. At the regional scale (>1000 km), we found significant differentiation (P<0.001) between island and continental populations in the Caribbean region, which we attributed to factors associated with the colonization history of P. officinalis in the Neotropics. Given that genetic structure can occur from local to regional spatial scales, it is critical that conservation recommendations be based on genetic information collected at the appropriate spatial scale.  相似文献
9.
10.
We studied the phytoplankton assemblage of the western basin of Lake Como (Northern Italy) during 1997. The phytoplankton assemblage was composed of 65 taxa, belonging to six taxonomic groups. Chlorophyta were represented by the highest number of taxa (28) followed by Bacillariophyceae (17), Cyanoprokaryota (9), Dinophyceae (6), Chrysophyceae (3) and Cryptophyta (2). The total assemblage density and biomass ranged from 902 ind ml–1 and 134.5 mm3 m–3 in February to 58 766 ind ml–1 and 9360 mm3 m–3 in October. The density and biomass variation at three stations showed a common pattern, with higher values in the southern part of the basin where TP concentrations were always greater. The phytoplankton succession was analysed by cluster analysis (average linkage clustering) and non-metric multidimensional scaling (NMDS) ordination, both applied to a dissimilarity matrix obtained from a calculation of the Bray–Curtis index. In general, the seasonal succession followed a simple pattern, with a clear spring phase. These results are discussed considering the trophic evolution of the lake and its recent colonization by Dreissena polymorpha.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号