首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   933篇
  免费   167篇
  国内免费   12篇
  2024年   1篇
  2023年   19篇
  2022年   26篇
  2021年   45篇
  2020年   46篇
  2019年   39篇
  2018年   39篇
  2017年   40篇
  2016年   31篇
  2015年   43篇
  2014年   75篇
  2013年   87篇
  2012年   54篇
  2011年   71篇
  2010年   51篇
  2009年   51篇
  2008年   55篇
  2007年   60篇
  2006年   46篇
  2005年   27篇
  2004年   39篇
  2003年   29篇
  2002年   15篇
  2001年   11篇
  2000年   8篇
  1999年   11篇
  1998年   6篇
  1997年   7篇
  1996年   6篇
  1995年   7篇
  1994年   4篇
  1993年   6篇
  1992年   5篇
  1991年   8篇
  1990年   3篇
  1989年   6篇
  1988年   3篇
  1987年   1篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1983年   1篇
  1982年   4篇
  1981年   3篇
  1980年   4篇
  1979年   2篇
  1978年   3篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
排序方式: 共有1112条查询结果,搜索用时 31 毫秒
1.
2.
The aim of the study was to investigate the effects of endovascular hypothermia on mitochondrial biogenesis in a pig model of prolonged cardiac arrest (CA). Ventricular fibrillation was electrically induced, and animals were left untreated for 10 min; then after 6min of cardiopulmonary resuscitation (CPR), defibrillation was attempted. 25 animals that were successfully resuscitated were randomized into three groups: Sham group (SG, 5, no CA), normal temperature group (NTG, 5 for 12 h observation and 5 for 24 h observation), and endovascular hypothermia group (EHG, 5 for 12 h observation and 5 for 24 h observation). The core temperatures (Tc) in the EHG were maintained at 34 ± 0.5 °C for 6 h by an endovascular hypothermia device (Coolgard 3000), then actively increased at the speed of 0.5 °C per hour during the next 6 h to achieve a normal body temperature, while Tc were maintained at 37.5 ± 0.5 °C in the NTG. Cardiac and mitochondrial functions, the quantification of myocardial mitochondrial DNA (mtDNA), peroxisome proliferator-activated receptor coactivator-1α (PGC-1α), nuclear respiratory factor (NRF)-1, and NRF-2 were examined. Results showed that myocardial and mitochondrial injury and dysfunction increased significantly at 12 h and 24 h after CA. Endovascular hypothermia offered a method to rapidly achieve the target temperature and provide stable target temperature management (TTM). Cardiac outcomes were improved and myocardial injuries were alleviated with endovascular hypothermia. Compared with NTG, endovascular hypothermia significantly increased mitochondrial activity and biogenesis by amplifying mitochondrial biogenesis factors’ expressions, including PGC-1α, NRF-1, and NRF-2. In conclusions, endovascular hypothermia after CA alleviated myocardial and mitochondrial dysfunction, and was associated with increasing mitochondrial biogenesis.  相似文献   
3.
The membrane type-1 matrix metalloproteinase (MT1-MMP) is a unique member of the MMP family, but induction patterns and consequences of MT1-MMP overexpression (MT1-MMPexp), in a left ventricular (LV) remodeling process such as myocardial infarction (MI), have not been explored. MT1-MMP promoter activity (murine luciferase reporter) increased 20-fold at 3 days and 50-fold at 14 days post-MI. MI was then induced in mice with cardiac restricted MT1-MMPexp (n = 58) and wild type (WT, n = 60). Post-MI survival was reduced (67% versus 46%, p < 0.05), and LV ejection fraction was lower in the post-MI MT1-MMPexp mice compared with WT (41 ± 2 versus 32 ± 2%,p < 0.05). In the post-MI MT1-MMPexp mice, LV myocardial MMP activity, as assessed by radiotracer uptake, and MT1-MMP-specific proteolytic activity using a specific fluorogenic assay were both increased by 2-fold. LV collagen content was increased by nearly 2-fold in the post-MI MT1-MMPexp compared with WT. Using a validated fluorogenic construct, it was discovered that MT1-MMP proteolytically processed the pro-fibrotic molecule, latency-associated transforming growth factor-1 binding protein (LTBP-1), and MT1-MMP-specific LTBP-1 proteolytic activity was increased by 4-fold in the post-MI MT1-MMPexp group. Early and persistent MT1-MMP promoter activity occurred post-MI, and increased myocardial MT1-MMP levels resulted in poor survival, worsening of LV function, and significant fibrosis. A molecular mechanism for the adverse LV matrix remodeling with MT1-MMP induction is increased processing of pro-fibrotic signaling molecules. Thus, a proteolytically diverse portfolio exists for MT1-MMP within the myocardium and likely plays a mechanistic role in adverse LV remodeling.  相似文献   
4.
Aim This study aims to document the floristic changes that occurred in Iceland between 15 and 6 Ma and to establish the dispersal mechanisms for the plant taxa encountered. Using changing patterns of dispersal, two factors controlling floristic changes are tested. Possible factors are (1) climate change, and (2) the changing biogeography of Iceland over the time interval studied; that is, the presence or absence of a Miocene North Atlantic Land Bridge. Location The North Atlantic. Methods Species lists of fossil plants from Iceland in the time period 15 to 6 Ma were compiled using published data and new data. Closest living analogues were used to establish dispersal properties for the fossil taxa. Dispersal mechanisms of fossil plants were then used to reconstruct how Iceland was colonized during various periods. Results Miocene floras of Iceland (15–6 Ma) show relatively high floristic turnover from the oldest floras towards the youngest; and few taxa from the oldest floras persist in the younger floras. The frequencies of the various dispersal mechanisms seen in the 15‐Ma floras are quite different from those recorded in the 6‐Ma floras, and there is a gradual change in the prevailing mode of dispersal from short‐distance anemochory and dyschory to long‐distance anemochory. Two mechanisms can be used to explain changing floral composition: (1) climate change, and (2) the interaction between the dispersal mechanisms of plants and the increasing isolation of proto‐Iceland during the Miocene. Main conclusions Dispersal mechanisms can be used to extract palaeogeographic signals from fossil floras. The composition of floras and dispersal mechanisms indicate that Iceland was connected both to Greenland and to Europe in the early Middle Miocene, allowing transcontinental migration. The change in prevalence of dispersal modes from 15 to 6 Ma appears to reflect the break‐up of a land bridge and the increasing isolation of Iceland after 12 Ma. Concurrent gradual cooling and isolation caused changes in species composition. Specifically, the widening of the North Atlantic Ocean prevented taxa with limited dispersal capability from colonizing Iceland, while climate cooling led to the extinction of thermophilous taxa.  相似文献   
5.
Summary Isolated heart ventricular preparations from rainbow trout were electrically stimulated to contraction. Following a temporary change in stimulation rate from 0.2 Hz to a higher value, the force fell to a minimum after which it increased and levelled off. Upon the return to 0.2 Hz a further transient increase in force appeared. The latter two responses were stimulated by an increased extracellular K+, which is known to inactivate the Na+ channel. The initial negative inotropic effect, in contrast to the two subsequent positive effects, was associated with a parallel decrease in amplitude of the action potential measured in 15 mM K+, used as an index of the Ca2+ influx. One micromolar (1 M) ryanodine did not affect either the negative or the positive responses due to an increase in stimulation rate, but depressed the force developed after prolonged periods of rest. Ten micromolar (10 M) adrenaline strongly inhibited the positive effects of an elevation of frequency. An elevation of extracellular Na+ from 141 to 166 mM had a similar effect. In conclusion, the positive effects occurring in 15 mM K+ do not seem to depend on the initial Na+ current. They may nevertheless depend on changes of the cellular Na+ balance as suggested by the effects of adrenaline, K+ and Na+. The functional role of the sarcoplasmic reticulum is unclear.  相似文献   
6.
The -carboxyl groups of Glu-43() and Glu-22() of hemoglobin-S (HbS), two intermolecular contact residues of deoxy protein, are activated by carbodiimide atp H 6.0. The selectivity of the modification by the two nucleophiles, glycine ethyl ester (GEE) and glucosamine, is distinct. Influence ofN-hydroxysulfosuccinimide, a reagent that rescues carbodiimide-activated carboxyl (O-acyl isourea) as sulfo-NHS ester, on the overall selectivity and efficiency of the coupling of Glu-22() and Glu-43() with nucleophiles has been investigated. Sulfo-NHS increases the extent of coupling of nucleophiles to HbS. The rescuing efficiency of sulfo-NHS(increase in modification) with GEE and galactosamine as nucleophiles is 2.0 and 2.8, respectively. In the presence of sulfo-NHS, the extent of modification of a carboxyl group is a direct reflection of the extent to which it is activated (i.e., the protonation state of the carboxyl group). The modification reaction exhibits very high selectivity for Glu-43() with GEE and galactosamine (GA) in the presence of sulfo-NHS. From the studies of the kinetics of amidation of oxy-HbS at its Glu-43() (i.e., chemical reactivity) as a function of thepH in the region of 5.5–7.5, the apparentpKa of its -carboxyl group has been calculated to be 6.35. Deoxygenation of HbS, nearly doubles the chemical reactivity of Glu-43() of HbS atpH 7.0. It is suggested that the increased hydrophobicity of the microenvironment of Glu-43(), which occurs on deoxygenation of the protein, is reflected as the increased chemical reactivity of the -carboxyl group and could be one of the crucial preludes to the polymerization process.  相似文献   
7.
Summary A unique cytoplasmic connection between erythroblasts was studied by electron microscopy in mouse hemopoietic tissues (fetal liver, fetal and neonatal spleen and adult bone marrow). Many pairs of interphase erythroblasts were connected by a cytoplasmic bridge that was very thin and sometimes long in comparison with telophase bridges. The stage of maturation of the cells in a pair was similar. Small numbers of microtubules ran along the cytoplasmic bridge; a mid-body was not seen. The plasma membrane at approximately the middle of the bridge bulged to form a ring-shaped ridge filled with dense amorphous substances; this was called a bulging ring. Thus, the cytoplasmic bridge between erythroblasts did not morphologically correspond to the telophase bridge in the usual cytokinesis. Cytoplasmic bridges were observed in various differentiating stages of erythroblasts, whereas other cell types of the hemopoietic lineage did not have such a bridge. The cytoplasmic bridge is unique to erythroblasts and provides an evidence for the atypical cytokinesis of the erythroblastic lineage.  相似文献   
8.
(1) The coronary vasodilator adenosine can be formed in the heart by breakdown of AMP or S-adenosylhomocysteine (SAdoHcy). The purpose of this study was to get insight into the relative importance of these routes of adenosine formation in both the normoxic and the ischemic heart. (2) A novel HPLC method was used to determine myocardial adenosine and SAdoHcy. Accumulation of SAdoHcy was induced in isolated rat hearts by perfusion with L-homocysteine thiolactone or L-homocysteine. The release of adenosine, inosine, hypoxanthine, xanthine and uric acid was determined. Additional in vitro experiments were performed to determine the kinteic parameters of S-adenosylhomocysteine hydrolase. (3) During normoxia the thiolactone caused a concentration-dependent increase in SAdoHcy. At 2000 μM of the thiolactone an SAdoHcy accumulation of 0.49 nmol/min per g wet weight was found during normoxia. L-Homocysteine (200 μM) caused an increased of 0.37 and 4.17 nmol SAdony/soc per g wet weight during normaxia and ischemia, respectively. (4) The adenosine concentration in ischemic hearts was significantly lower when homocysteine was infused (6.2 vs. 115 nmol/g; P < 0.05). Purine release was increased 4-fold during ischemia. (5) The Km for hydrolysis of SAdoHcy was about 12 μM. At in vitro conditions favoring near-maximal SAdoHcy synthesis (72 μM adenosine, 1.8 mM homocysteine), the synthesis rate in homogenates was 10 nmol/min per g wet weight. (6) From the combined in vitro and perfusion studies, we comclude that S-adenosylhomocysteine hydrolase can contribute significantly to adenosine production in normoxic rat heart, but not during ischemia.  相似文献   
9.
Cardiac copper,magnesium, and zinc in recent and old myocardial infarction   总被引:1,自引:0,他引:1  
X-ray fluorescence spectrometry and atomic absorption spectrometry were used in a quantitative study of zinc, copper, and magnesium in 71 postmortal human hearts. Samples were obtained from individuals who had demonstrated no previous clinical or subsequent pathological findings of myocardial infarction and from victims of a recent or an old infarction. A significant difference (p<0.001) in the elemental levels was observed between the noninfarct and the recent infarct groups. The noninfarct group had higher cardiac levels of all three elements. However, the difference in elemental concentrations between the noninfarct and the old-infarct groups was not significant. Cardiac levels of zinc (p<0.001) and copper (p<0.01) were significantly greater in the old-infarct group than in the recent-infarct group. Magnesium levels were higher in the recent-and-old-infarct group than in the recent infarct group (p<0.01). It is possible that the elements are redistributed during myocardial infarction, and that uptake of these elements (from the serum pool) by the heart may be important in maintaining myocardial integrity and function.  相似文献   
10.
Isolated muscle cells from adult rat heart have been used to study the relationship between myocardial glucose transport and the activity of the Na+/K+ pump. 86Rb+-uptake by cardiac cells was found to be linear up to 2 min with a steady-state reached by 40–60 min, and was used to monitor the activity of the Na+/K+ pump. Ouabain (10?3 mol/I) inhibited the steady-state uptake of 86Rb+ by more than 90%. Both, the ouabain-sensitive and ouabain-insensitive 86Rb+-uptake by cardiac cells were found to be unaffected by insulin treatment under conditions where a significant stimulation of 3-O-methylglucose transport occurred. 86Rb+-uptake was markedly reduced by the presence of calcium and/or magnesium, but remained unresponsive towards insulin treatment. Inhibition of the Na+/K+ pump activity by ouabain and a concomitant shift in the intracellular Na+:K+ ratio did not affect basal or insulin stimulated rates of 3-O-methylglucose transport in cardiac myocytes. The data argue against a functional relationship between the myocardial Na+/K+ pump and the glucose transport system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号