首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
  国内免费   3篇
  2023年   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1991年   2篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
1.
为了解寄生植物叶片功能性状的差异及其影响因素,研究了西双版纳地区寄主植物对3种桑寄生植物叶片功能性状的影响,并分析了桑寄生植物与寄主植物叶片功能性状的相关性。结果表明,不同寄主植物的相同寄生植物叶片功能性状存在显著差异,来自7种寄主植物的五蕊寄生(Dendrophthoe pentandra)的叶片含水量(61.2%~70.1%)、氮含量(9.6~16.0 g/kg)、碳氮比(30.8~48.5)以及缩合单宁含量(3.3%~11.0%)等性状的差异较大;从4种寄主植物上获取的澜沧江寄生(Scurrula chingii var.yunnanensis)的叶片含水量(60.0%~71.7%)、碳含量(431.3~502.3 g/kg)和缩合单宁含量(3.8%~9.9%)等性状也呈现较大种间差异,而在2种寄主植物上的离瓣寄生(Helixanthera parasitica)的叶片功能性状没有显著差异。桑寄生植物与寄主植物的叶片含水量、总碳含量、总氮含量、碳氮比和缩合单宁含量呈显著的正相关。寄主植物作为桑寄生植物营养物质的主要来源,会影响桑寄生植物叶片的相应功能性状。桑寄生植物能从寄主植物获...  相似文献   
2.
Summary Seasonal and diurnal gas exchange and water relations of Amyema linophyllum and its host Casuarina obesa were studied at Gingin Western Australia. As recorded elsewhere for other species of mistletoe, stomatal conductances and transpiration rates were consistently higher in parasite than host, but assimilation rates did not differ significantly between partners, and water use efficiency was accordingly substantially lower in the parasite. Parallel responses of the species to environmental conditions suggested closely coordinated stomatal behaviour. However, sunlit and artifically shaded clumps of Amyema maintained high leaf conductances even when foliage fell below turgor loss point, yet their tissue capacitance values indicated maintenance of greater tissue water reserves during stress than in the host. Pressure-volume relationships indicated that differences in tissue water relations were unlikely to contribute significantly to the observed gradient in leaf water potential between partners. An experiment measuring changes in water potential of freshly detached host: parasite systems cut with the host shoot end immersed in water indicated that the haustorial junction was the principal site of resistance to transpiration-driven water flow into the parasite. A parallel experiment on intact attached shoots with mistletoe clumps enclosed and darkened just before dawn, demonstrated that, once the host commenced rapid transpiration, the water potential gradient between partners became reversed.  相似文献   
3.
Articulatin-D, a 66 kDa ribosome inactivating protein (RIP) comprised of 29 kDa A-chain linked to 35 kDa B-chain, is purified from leafless mistletoe (Viscum articulatum) parasitic on Dalbergia sp. from Western Ghats (India). N-terminal sequence and LC-MS/MS analyses of A- and B-chain confirmed that articulatin-D is a type-2 RIP having high homology with other mistletoe lectins. Translation inhibition and diagnostic N-glycosidase activity of articulatin-D illustrate the presence of catalytically active A-chain. Its inability to: (i) bind to acid treated Sepharose CL-6B column, (ii) agglutinate trypsin-treated and untreated RBCs of human (A, B, O, AB), mice, rat, rabbit, buffalo, porcine, pigeon, cock, fish, sheep and goat even with 10 mg/ml of purified articulatin-D, (iii) show change in circular dichroism spectra after addition of sugar to the native protein, (iv) bind to different sugars (galactose, lactose, gal-NAc, rhamnose, arabinose, fucose and mannose) immobilized on Sepharose 4B matrix, and (v) show change in enthalpy during titration with galactose confirm that the B-chain of articulatin-D lacks sugar binding activity. Despite this, articulatin-D is highly toxic as characterized with low IC50 against different cancer cell lines (Jurkat: 0.31 ± 0.02 nM, MOLT-4: 0.51 ± 0.03 nM, U-937: 0.64 ± 0.07 nM, HL-60: 0.79 ± 0.11 nM, Raji: 1.45 ± 0.09 nM). Toxicity of RIPs has been ascribed to the absence/presence of B-chain with sugar binding activity. Identification of articulatin-D, the first cytotoxic RIP with B-chain lacking sugar binding activity opens new vistas in understanding cytotoxic action of RIPs.  相似文献   
4.
Loranthaceae family includes hemiparasitic members which are seen invading a wide range of commercial crops. Helicanthes elasticus (Desv.) Danser is very common on mango trees. Though parasitic in nature, this mistletoe is also medicinally important as fetoprotective, against vesicular calculi and kidney infections. This study is an attempt to document macro-microscopical features of parasitic root, fruit and host-mistletoe tissue interaction in the haustorium of H. elasticus growing on mango stems. Collection, preservation, sectioning, staining and photomicrography of the root, fruit and host-mistletoe union were done as per standard methodologies of anatomical studies. Though there is resemblance to the normal roots in morphology as well as anatomy, the microscopic finding of large number of branched stone cells in the roots is interesting. The morpho-anatomical features recorded would help in understanding the infection biology of this mistletoe. The eradication during the earlier stages of its establishment from seed or from the root creeping over the surface of the host can help in controlling this parasite infection on commercially important host plants.  相似文献   
5.
Mistletoes are hemiparasitic plants growing on aerial parts of other host trees. Many of the mistletoes are reported to be medicinally important. The hemiparasitic nature of these plants makes their chemical composition dependent on the host on which it grows. They are shown to exhibit morphological dissimilarities also when growing on different hosts. Helicanthus elastica (Desr.) Danser (mango mistletoe) is one such less explored medicinal mistletoe found on almost every mango tree in India. Traditionally, the leaves of this plant are used for checking abortion and for removing stones in the kidney and urinary bladder while significant antioxidant and antimicrobial properties are also attributed to this species of mistletoe. The current study was undertaken to evaluate molecular differences in the genomic DNA of the plant while growing on five different host trees using four random markers employing random amplified polymorphic DNA (RAPD) followed by similarity matrix by Jaccard’s coefficient and distance matrix by hierarchal clustering analysis. Similarity and distance matrix data employing just 4 random markers, separately and the pooled data as well, revealed significant difference in the genomic DNA of H. elastica growing on five different hosts. Pooled data of similarity from all the 4 primers cumulatively showed similarity between 0.256 and 0.311. Distance matrix ranged from of 0.256 to 0.281 on pooling the data from all the four primers. The result employing a minimum number of primers could conclude that genomic DNA of H. elastica differs depending upon the host on which it grows, hence the host must be considered while studying or utilizing this mistletoe for medicinal purposes.  相似文献   
6.
Summary The unusual thick-walled cells in contact with host and parasite vessels, first noted by Calvin 1967 in sinkers (structures composed of tracheary elements and parenchyma that originate from parasite bark strands that grow centripetally to the host vascular cambium and become embedded by successive development of xylem) of the mistletoePhoradendron macrophyllum (Englem.) Cockerell, have been investigated by modern methods of microscopy. The wall is thickest in cells abutting large-diameter host vessels, less so against smaller host vessels and those abutting sinker vessels. Transmission electron microscopy reveals the wall to be complex, consisting of a basement primary wall, upon which two developments of secondary-wall material occur. These are represented by lignified thickenings, in the form of flanges, and a labyrinth of wall ingrowths characteristic of a transfer cell. The wall ingrowths occur mostly in the primary-wall regions between the flanges, but when in contact with a large host vessel the ingrowths also differentiate on top of the flanges. Cells with such a transfer cell labyrinth have not been previously reported in the endophytic system of a mistletoe. The cells are confined to the xylary portion of the primary haustorium and sinkers. InP. macrophyllum, however, the cells differ from ordinary transfer cells in that they have differentiated as part of a flange parenchyma cell. This arrangement represents a novel anatomical situation. The name flange-walled transfer cell is used for these cells. The xylem of primary haustorium and sinkers also contain numerous ordinary flange cells. In both flange-walled transfer cells and ordinary flange cells the flanges are lignified and form a reticulate pattern of thickenings, separated by rounded areas of primary pit fields. The extent of development of the flange wall can vary in different parts of a sinker. At the host interface, the existence of a flange-walled transfer cell in direct contact with a vessel reflects a site associated with high loading into the parasite. Similarly, a labyrinth against a sinker vessel indicates a site of unloading from surrounding sinker tissue into the vessel for subsequent longdistance transport within the parasite.Dedicated to the memory of Dr. Katherine Esau (1898–1997)  相似文献   
7.
Conventional and biotechnological approaches for control of parasitic weeds   总被引:2,自引:0,他引:2  
On a worldwide basis, parasitic weeds represent one of the most destructive and intractable problems to agricultural production in both developed and developing countries. About 20 families (3,000–5,000 species) of higher plants are parasitic on the plant kingdom and may cause production losses of 30–80% in staple food and industrial crops on every continent. Compared with the other weeds, parasitic weeds are difficult to control by conventional means because of their life style: Parasites are intimately involved with the host and have so much metabolic overlap with the host that differential treatments are very difficult to develop. In some cases, the parasites are closely associated to the host root, concealed underground, and undiagnosed until they irreversible damage the crop. Several different approaches (cultural, mechanical, chemical, use of resistant varieties, and biological) to control parasitic weeds are currently in use, but are only partially successful. Recent reviews have covered the physiology and interactions between parasitic plants and their hosts, taxonomy, and the biology and classical control of parasitic weeds. The current review will discuss why alternative methods are needed to control parasitic weeds and will summarize conventional and new biotechnology-based control measures against the major world pests Striga, Orobanche, Cuscuta, and mistletoes (Phoradendron and Viscum genera). Effectiveness, advantages and disadvantages, environment safety, and simplicity of these new biotechnological methods will be reviewed.  相似文献   
8.
Cernusak LA  Pate JS  Farquhar GD 《Oecologia》2004,139(2):199-213
We measured leaf dry matter 18O and 13C in parasitic plants and their hosts growing in southwestern Australia. Parasite/host pairs included two mistletoe species, three species of holoparasites, and five species of root hemiparasites. Among these parasite functional types, significant variation was observed in parasite/host isotopic differences for both 18O (P<0.0001, n=65) and 13C (P<0.0001, n=64). Mistletoes were depleted in both 18O and 13C compared to their hosts; parasite/host differences were –4.0 for 18O (P<0.0001) and –1.9 for 13C (P<0.0001). The lower 18O in mistletoe leaf dry matter compared to their hosts is consistent with the frequently observed high transpiration rates of these parasites. Root hemiparasites were also depleted in 18O and 13C compared to their hosts, but not to the same extent as mistletoes; parasite/host differences were –1.0 for 18O (P=0.04) and –1.2 for 13C (P=0.0006). In contrast to mistletoes and root hemiparasites, holoparasites were enriched in both 18O and 13C compared to their hosts; parasite/host differences were +3.0 for 18O (P<0.0001) and +1.5 for 13C (P=0.02). The enrichment in 18O for holoparasite dry matter did not result from more enriched tissue water; holoparasite tissue water 18O was less than host leaf water 18O by a difference of –3.8 when sampled at midday (P=0.0003). Enrichment of holoparasites in 13C compared to their hosts is consistent with a generally observed pattern of enrichment in heterotrophic plant tissues. Results provide insights into the ecology of parasitic plants in southwestern Australia; additionally, they provide a context for the formulation of specific hypotheses aimed at elucidating mechanisms underlying isotopic variations among plants.  相似文献   
9.
Brian A. Fineran 《Protoplasma》1996,194(1-2):40-53
Summary Flange cells are an unusual type of parenchyma cells with an open reticulate pattern of secondary wall thickenings. The cells superficially resemble tracheary elements but are otherwise fundamentally different. Flange cells were found in haustorial sucker tissue of the dwarf mistletoeKorthalsella. Such cells were previously unknown for a mistletoe, or other parasitic angiosperm. Flange cells are confined to the xylem of the sucker and occur as either diffuse aggregates amongst the ordinary parenchyma tissue lying between the tracts of vessels, or abut the vessels. Typical flange cells are absent at the parasite/host xylem interface. The cells contain a well differentiated protoplast, including chloroplasts with extensive granal stacks. Histochemical staining and fluorescence microscopy indicate lignification of the flange wall. In thin section, the flange wall is often stratified into dark and light staining layers. Flange cells inKorthalsella resemble contact cells, vessel associated cells and certain types of transfer cells reported in the literature. Based on morphological considerations, it is suggested that flange cells inKorthalsella are involved in absorption and transport between host and parasite. As host sap moves through the sucker apoplasm, substance might be selectively absorbed by the flange cell, before the remaining the sap passes into the vessels for long distance transport in the mistletoe.Dedicated to Prof. Dr. Rainer Kollmann on the occasion of his 65th birthday  相似文献   
10.
Xylem-tapping mistletoes are known to have normally a higher rate of transpiration and lower water-use efficiency than their hosts. The relationships between water relations, nutrients and growth were investigated for Phoradendron juniperinum growing on Juniperus osteosperma (a non-nitrogen-fixing tree) and for Phoradendron californicum growing on Acacia greggii (a nitrogen-fixing tree). Xylem sap nitrogen contents were approximately 3.5 times higher in the nitrogen-fixing host than in the non-nitrogen-fixing host. The results of the present study show that mistletoe growth rates were sevenfold greater on a nitrogen-fixing host. At the same time, however, the differences in water-use efficiency between mistletoes and their hosts, which were observed on the non-nitrogen-fixing host did not exist when mistletoes were grown on hosts with higher nitrogen contents in their xylem sap. Growth rates and the accumulation of N, P, K, and Ca as well as values for carbon-isotope ratios of mistletoe tissues support the hypothesis that the higher transpiration rates of mistletoes represent a nitrogen-gathering mechanism.Abbreviation 13C carbon-isotope ratio Dedicated to Professor Dr. Hubert Ziegler on the occasion of his 60th birthday  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号