首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2891篇
  免费   678篇
  国内免费   128篇
  2024年   7篇
  2023年   102篇
  2022年   73篇
  2021年   132篇
  2020年   215篇
  2019年   223篇
  2018年   154篇
  2017年   217篇
  2016年   199篇
  2015年   216篇
  2014年   197篇
  2013年   232篇
  2012年   159篇
  2011年   158篇
  2010年   147篇
  2009年   181篇
  2008年   157篇
  2007年   163篇
  2006年   188篇
  2005年   131篇
  2004年   101篇
  2003年   81篇
  2002年   60篇
  2001年   48篇
  2000年   30篇
  1999年   28篇
  1998年   6篇
  1997年   9篇
  1996年   6篇
  1995年   7篇
  1994年   3篇
  1993年   10篇
  1992年   20篇
  1991年   12篇
  1990年   17篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1958年   1篇
排序方式: 共有3697条查询结果,搜索用时 218 毫秒
1.
In an ecosystem under simultaneous threat from multiple alien species, one invader may buffer the impact of another. Our surveys on a remote floodplain in the Kimberley region of north western Australia show that invasive chinee apple trees (Ziziphus mauritiana) provide critical refuge habitat for native rodents (pale field rats, Rattus tunneyi). Feral horses (Equus caballus) have trampled most of the remaining floodplain, but are excluded from the area around each chinee apple tree by thorny foliage. Although chinee apple trees constituted <10% of trees along our transects, they represented >50% of trees that harboured rat burrows. The mean number of burrows under each chinee apple tree was twice as high as under most other tree species, and we trapped more than seven times as many rats under chinee apple trees as under other types of trees. The extensive burrow systems under chinee apple trees contained female as well as male rats, whereas we only captured males around the smaller burrow systems under other tree species. Our data suggest that this invasive tree plays a critical role in the persistence of pale field rat populations in this degraded ecosystem, and that managers should maintain these trees (despite their alien origins) at least until feral horses have been removed.  相似文献   
2.
3.
Habitat fragmentation and invasive species often contribute to the decline of native taxa. Since the penetration of non‐native species into natural habitat may be facilitated by habitat fragmentation, it is important to examine how these two factors interact. Previous research documented that, in contrast to most other arthropod taxa, spiders increased in density and morphospecies richness with decreasing fragment area and increasing fragment age (time since insularization) in urban habitat fragments in San Diego County, California, USA. We tested whether a specific mechanism, an increase in non‐native species with fragmentation, is responsible for this pattern. We found that both native and non‐native taxa contributed to the pattern. Abundance of native spiders per pitfall trap sample increased significantly with decreasing fragment size (i.e. a negative density–area relationship) and abundance of non‐natives increased significantly with increasing fragment age. The proportion of non‐native individuals also increased significantly with age. One non‐native species, Oecobius navus, comprised the majority of non‐native individuals (82.2%) and a significant proportion of total individuals (25.1%). Richness of spider families per sample (family density) increased with fragment age due to an increase in the occurrence of non‐natives in older fragments, however, native family richness did not vary with age or area. Due to increasing dominance by non‐native and some native families, family evenness declined with decreasing fragment size and increasing fragment age. Native and non‐native abundance covaried positively arguing against strong negative interactions between the two groups. O. navus had a strong positive association with another common non‐native arthropod, the Argentine ant (Linepitheme humile), suggesting a possible direct interaction. In contrast, abundance of native spiders was negatively correlated with Argentine ant abundance. We hypothesize that fragmentation in this semiarid habitat increases productivity in smaller and older fragments enhancing the density of both native and non‐native taxa.  相似文献   
4.
Aim We studied how the abundance of the highly invasive fruit‐bearing tree Miconia calvescens DC. influences seed dispersal networks and the foraging patterns of three avian frugivores. Location Tahiti and Moorea, French Polynesia. Methods Our study was conducted at six sites which vary in the abundance of M. calvescens. We used dietary data from three frugivores (two introduced, one endemic) to determine whether patterns of fruit consumption are related to invasive tree abundance. We constructed seed dispersal networks for each island to evaluate how patterns of interaction between frugivores and plants shift at highly invaded sites. Results Two frugivores increased consumption of M. calvescens fruit at highly invaded sites and decreased consumption of other dietary items. The endemic fruit dove, Ptilinopus purpuratus, consumed more native fruit than either of the two introduced frugivores (the red‐vented bulbul, Pycnonotus cafer, and the silvereye, Zosterops lateralis), and introduced frugivores showed a low potential to act as dispersers of native plants. Network patterns on the highly invaded island of Tahiti were dominated by introduced plants and birds, which were responsible for the majority of plant–frugivore interactions. Main conclusions Shifts in the diet of introduced birds, coupled with reduced populations of endemic frugivores, caused differences in properties of the seed dispersal network on the island of Tahiti compared to the less invaded island of Moorea. These results demonstrate that the presence of invasive fruit‐bearing plants and introduced frugivores can alter seed dispersal networks, and that the patterns of alteration depend both on the frugivore community and on the relative abundance of available fruit.  相似文献   
5.
6.
7.
In species reproducing both sexually and asexually clones are often more common in recently established populations. Earlier studies have suggested that this pattern arises due to natural selection favouring generally or locally successful genotypes in new environments. Alternatively, as we show here, this pattern may result from neutral processes during species’ range expansions. We model a dioecious species expanding into a new area in which all individuals are capable of both sexual and asexual reproduction, and all individuals have equal survival rates and dispersal distances. Even under conditions that favour sexual recruitment in the long run, colonization starts with an asexual wave. After colonization is completed, a sexual wave erodes clonal dominance. If individuals reproduce more than one season, and with only local dispersal, a few large clones typically dominate for thousands of reproductive seasons. Adding occasional long‐distance dispersal, more dominant clones emerge, but they persist for a shorter period of time. The general mechanism involved is simple: edge effects at the expansion front favour asexual (uniparental) recruitment where potential mates are rare. Specifically, our model shows that neutral processes (with respect to genotype fitness) during the population expansion, such as random dispersal and demographic stochasticity, produce genotype patterns that differ from the patterns arising in a selection model. The comparison with empirical data from a post‐glacially established seaweed species (Fucus radicans) shows that in this case, a neutral mechanism is strongly supported.  相似文献   
8.
Invasions by exotic toxic prey, like the release of the South American cane toad (Bufo (Rhinella) marinus) to the toad‐free Australian continent in 1935, have been shown to result in massive declines in native predator numbers. Due to minor nucleotide mutations of the Na+/K+‐ATPase gene most Australian squamate predators are highly susceptible to cane toad toxin. However, in spite of this, predators like yellow‐spotted goannas (Varanus panoptes) and red‐bellied black snakes (Pseudechis porhyriacus) still persist in parts of Queensland where they, in some areas, have co‐existed with cane toads for more than 70 years. Here, we show that the amino acids of the Na+/K+‐ATPase enzyme in the two species do not provide toad toxin resistance, and hence the two Queensland predators are still highly susceptible to cane toad toxin. Both yellow‐spotted goannas and lace monitors (Varanus varius) have, however, been recorded avoiding feeding on cane toads in areas where they co‐exist with this toxic amphibian. Moreover, both varanids have also been shown to learn to avoid feeding on toads when first subjected to conditioned taste aversion. Such behavioural shifts may therefore explain why yellow‐spotted goannas and red‐bellied black snakes still exist in cane toad infested areas of Queensland. The process appears, however, to be unable to rapidly restore varanid populations to pre‐toad population numbers as even after 10 years of co‐existence with cane toads in the Northern Territory, we see no signs of an increase in yellow‐spotted goanna numbers.  相似文献   
9.
Identifying which introduced species have the greatest potential for establishment, spread and impact is critical for prioritizing pre‐ and post‐border control. Using species distribution modelling and existing species locations we assessed the establishment risk based on the climatic suitability areas of 25 plant species listed as eradication targets under South African regulations. To improve confidence, three bioclimatic models were used to predict the potential distribution of each species. This information was combined with the number of localities and the “eradication feasibility syndromes” in a scoring‐categorical system to rank the species. Three management groups were identified. Group “A” includes species with medium‐high establishment risk and higher likelihood to be eradicated, these species should be a priority for eradication. Group “B” includes species with a medium‐low establishment risk but given the low number of known population and the species characteristics, eradication is likely to be feasible. Finally species in group “C” scored a medium‐high establishment risk but the eradication would be difficult due to the high number of known localities. This ranking provides a rapid method to prioritize the management towards the eradication of new potential invasive plant species in the country combining the establishment risk, known number of localities and the inferred eradication success.  相似文献   
10.
Herbivory is a fundamental process that controls primary producer abundance and regulates energy and nutrient flows to higher trophic levels. Despite the recent proliferation of small‐scale studies on herbivore effects on aquatic plants, there remains limited understanding of the factors that control consumer regulation of vascular plants in aquatic ecosystems. Our current knowledge of the regulation of primary producers has hindered efforts to understand the structure and functioning of aquatic ecosystems, and to manage such ecosystems effectively. We conducted a global meta‐analysis of the outcomes of plant–herbivore interactions using a data set comprised of 326 values from 163 studies, in order to test two mechanistic hypotheses: first, that greater negative changes in plant abundance would be associated with higher herbivore biomass densities; second, that the magnitude of changes in plant abundance would vary with herbivore taxonomic identity. We found evidence that plant abundance declined with increased herbivore density, with plants eliminated at high densities. Significant between‐taxa differences in impact were detected, with insects associated with smaller reductions in plant abundance than all other taxa. Similarly, birds caused smaller reductions in plant abundance than echinoderms, fish, or molluscs. Furthermore, larger reductions in plant abundance were detected for fish relative to crustaceans. We found a positive relationship between herbivore species richness and change in plant abundance, with the strongest reductions in plant abundance reported for low herbivore species richness, suggesting that greater herbivore diversity may protect against large reductions in plant abundance. Finally, we found that herbivore–plant nativeness was a key factor affecting the magnitude of herbivore impacts on plant abundance across a wide range of species assemblages. Assemblages comprised of invasive herbivores and native plant assemblages were associated with greater reductions in plant abundance compared with invasive herbivores and invasive plants, native herbivores and invasive plants, native herbivores and mixed‐nativeness plants, and native herbivores and native plants. By contrast, assemblages comprised of native herbivores and invasive plants were associated with lower reductions in plant abundance compared with both mixed‐nativeness herbivores and native plants, and native herbivores and native plants. However, the effects of herbivore–plant nativeness on changes in plant abundance were reduced at high herbivore densities. Our mean reductions in aquatic plant abundance are greater than those reported in the literature for terrestrial plants, but lower than aquatic algae. Our findings highlight the need for a substantial shift in how biologists incorporate plant–herbivore interactions into theories of aquatic ecosystem structure and functioning. Currently, the failure to incorporate top‐down effects continues to hinder our capacity to understand and manage the ecological dynamics of habitats that contain aquatic plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号