首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   0篇
  国内免费   5篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   7篇
  2012年   3篇
  2011年   17篇
  2010年   7篇
  2009年   5篇
  2008年   14篇
  2007年   18篇
  2006年   10篇
  2005年   10篇
  2004年   8篇
  2003年   9篇
  2002年   6篇
  2001年   4篇
  1999年   2篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   5篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1986年   4篇
  1985年   4篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   4篇
  1975年   1篇
排序方式: 共有178条查询结果,搜索用时 16 毫秒
1.
2.
There was little release of extractable SO4-S during four weeks from CS2 applied by injecting into two S-deficient soils. In this incubation experiment, the rate of CS2 was 30 μg S g, placement was injection at 9 cm depth, soil temperature was 20°C, and soil moisture tension was 33 kPa. The yield of barley forage after seven weeks in the greenhouse showed only small increases from 10 or 30 μg S g−1 of CS2 as compared to Na2SO4, on the two soils. While CS2 supplied little plant available S in the short term, it was an effective inhibitor of nitrification. In the laboratory, or in the field, the injection of CS2 (with N fertilizers) at a point 9 cm into the soils either stopped or reduced nitrification. In one laboratory experiment, 35 μg of CS2 g−1 of soil with urea reduced nitrification for at least four weeks; and in another experiment 20 μg of CS2 g−1 of soil with aqua NH3 nearly or completely inhibited nitrification at 20 days. In two field experiments, 3 and 12 μg of CS2 g−1 of soil (or 6 and 24 kg ha−1) with aqua NH3 inhibited nitrification from October to the subsequent May. In addition, CS2 reduced the amount of ammonium produced from the soil N, both in these two field experiments and in the laboratory experiments. That is to say, CS2 injected at a point, inhibited both nitrification and ammonification. In other field experiments, CS2 at a rate of 10 kg ha−1 was injected in bands 9 cm deep with urea in October, and by May there was still reduced nitrification. Less than half of the fall-applied urea alone was recovered as mineral N, but with the application of CS2 the recovery was increased to three-quarters. The yield and N uptake of barley grain was increased where fall-applied banded urea or aqua NH3 received banded CS2, (NH4)2CS3, or K2CS3. The average increase in yield from fall-applied fertilizer, from inhibitor with fall-applied fertilizer, and from spring-applied fertilizer was 800, 1370, and 1900 kg ha−1, respectively. In the same order, the apparent % recovery of fertilizer N in grain was 24, 42, and 60.  相似文献   
3.
东北黑土有机磷的矿化过程研究   总被引:1,自引:0,他引:1  
用室内恒温控湿培养法和埋袋法研究了不同时间序列下黑土有机磷的矿化过程.结果表明,无论是实验室培养法还是埋袋法,有机磷含量和矿化速率都逐渐下降,累积矿化率逐渐上升.培养法中,两个处理的矿化速率均在1个月时最大,分别为31.67和38.75 mg·kg-1·month-1,6个月时累积矿化率和矿化速率分别为7.94%,13.26 mg·kg-1·month-1; 9.24%,17.99 mg·kg-1·month-1.埋袋法中,5个有机物料处理的矿化速率均在1年时最大,分别为55.67、55.65、49.60、19.71和22.52 mg·kg-1·month-1,3年时玉米根和小麦根处理的累积矿化率和矿化速率较高(二者3年的累积矿化率约50%,矿化速率约35 mg·kg-1·month-1),而大豆根和草根的处理则较低.同时,两种研究方法均表明,有机磷初始含量影响其矿化率和矿化速率,有机磷初始含量愈高,其矿化率和矿化速率就愈高.  相似文献   
4.
Phosphatases are recognized to have important functions in the initiation of skeletal mineralization. Tissue-nonspecific alkaline phosphatase (TNAP) and PHOSPHO1 are indispensable for bone and cartilage mineralization but their functional relationship in the mineralization process remains unclear. In this study, we have used osteoblast and ex-vivo metatarsal cultures to obtain biochemical evidence for co-operativity and cross-talk between PHOSPHO1 and TNAP in the initiation of mineralization. Clones 14 and 24 of the MC3T3-E1 cell line were used in the initial studies. Clone 14 cells expressed high levels of PHOSPHO1 and low levels of TNAP and in the presence of β-glycerol phosphate (βGP) or phosphocholine (P-Cho) as substrates and they mineralized their matrix strongly. In contrast clone 24 cells expressed high levels of TNAP and low levels of PHOSPHO1 and mineralized their matrix poorly. Lentiviral Phospho1 overexpression in clone 24 cells resulted in higher PHOSPHO1 and TNAP protein expression and increased levels of matrix mineralization. To uncouple the roles of PHOSPHO1 and TNAP in promoting matrix mineralization we used PHOSPHO1 (MLS-0263839) and TNAP (MLS-0038949) specific inhibitors, which individually reduced mineralization levels of Phospho1 overexpressing C24 cells, whereas the simultaneous addition of both inhibitors essentially abolished matrix mineralization (85%; P<0.001). Using metatarsals from E15 mice as a physiological ex vivo model of mineralization, the response to both TNAP and PHOSPHO1 inhibitors appeared to be substrate dependent. Nevertheless, in the presence of βGP, mineralization was reduced by the TNAP inhibitor alone and almost completely eliminated by the co-incubation of both inhibitors. These data suggest critical non-redundant roles for PHOSPHO1 and TNAP during the initiation of osteoblast and chondrocyte mineralization.  相似文献   
5.
Nitrogen cycling in poplar stands defoliated by insects   总被引:3,自引:0,他引:3  
Large-scale outbreaks of defoliating insects are common in temperate forests. These outbreaks are thought to be responsible for substantial cycling of nitrogen (N), and its loss from the system. Gypsy moth (Lymantria dispar) populations within poplar plots were manipulated over 2 years so that the ecosystem-wide consequences of catastrophic defoliation on N cycling could be examined. The quantities of N in leaf litter-fall, ammonia volatilization and soil N pools were estimated across the two seasons. Defoliated leaf biomass was estimated from experimentally derived approximate digestibility factors and added to the mass of senesced leaf to determine total annual leaf production. Throughout the growing season the defoliation treatment peaked at about 40% in year 1 and 100% in year 2. Rapid regrowth after defoliation meant that only 45% of the annual leaf biomass was consumed in the defoliation treatment in year 2, while control plots suffered about 20% consumption each year. In each year, defoliated plots produced 20% more leaf biomass and N than the controls, a phenomenon attributed to compensatory photosynthesis. No substantial losses of N via ammonia volatilization, nitrous oxide emission or nitrate leaching were observed. Neither was there any sustained or substantial gain in the soils microbial biomass or inorganic N pools. These observations suggest that the defoliated poplars were able to compete with soil microbes and N loss mechanisms for soil N as it became available, thereby ameliorating the effects of defoliation on soil nitrogen cycling. We conclude from this study that the N mineralized from defoliation residues was conserved in this plantation ecosystem.  相似文献   
6.
Acidic deposition, nutrient leaching and forest growth   总被引:9,自引:0,他引:9  
Studies in Germany and confirmed in North America established that the forest decline that developed in the late 1970's and 80's resulted from a deficiency in one or more of the nutrient cations: Ca2+, Mg2+, and K+. These nutrients are essential to the structure of the foliage, to photosynthesis and to the growth of the trees. The reactions and mechanisms involved in the entry of nutrients to the soil, their storage, and rate of transfer to the soil solution, and through it, to the fine roots and to the leaves at the top of the tree are reviewed. The continuing material balance studies carried out on a watershed at the Hubbard Brook Experimental Forest in New Hampshire allow a unique analysis of the changes caused in these nutrient transfers by acid rain. The nutrient cations are stored in the soil by adsorption on negatively charged clay, and the presence of an acid is required for their release to the soil solution. In pre-industrial times this acid was H2CO3, which was subsequently displaced from the soil solution by H2SO4 and HNO3, as a result of acid deposition. The effect of the increased concentration of the negatively charged SO4 2– and NO3 anions seeping through the soil, compared with that of the HCO3 that had been previously present, resulted in a substantially increased rate of transfer of an equivalent of Ca2+ and other positively charged nutrient cations from the soil to the soil solution. The increased concentration of Ca2+ in the soil solution resulted in both an initial increase in the rate of biomass growth and in a simultaneous increase in the rate of Ca2+ loss in the effluent soil solution from the watershed. It was found that this increased rate of removal of Ca2+ from the watershed soil had become greater than its rate of input to the soil from weathering and from dust and rain. As a result, the large Ca2+ inventory that had built up in the soil as a result of the reduced leaching in the years prior to the entry of acid rain, that started in about the1880's, was eventually depleted in the hardwood forest at Hubbard Brook in the 1980's, about 100 years later. With insufficient Ca2+ available for its continuing transfer, net biomass growth on the watershed stopped. This resulted from the rate of tree mortality becoming equal to that of the small incremental growth of a few trees on the watershed. The future growth of forests is at risk from the long-term effects of acid deposition. The fundamental nature of the reactions involved indicates that similar growth anomalies are occurring in other forests impacted by acid rain. These changes from normal biomass growth can affect the amount of CO2 stored in the biomass, of importance to our understanding of Global Warming.  相似文献   
7.
研究了楝树籽不同方式的提取物(NI,NⅡ)对普通铁质淋溶土壤,简有水耕人为土壤供N和N肥利用率的影响。NI可在一定程度上抑制两种土壤产生NO3-N,NⅡ在两种土壤上前期均能显著固定NH4^ -N并在后期释放出NH4^ -N。如果NI和NⅡ2种提取物同时与化肥N施入土壤,则可明显改善土壤的供N状况,使这与作物需N过程更吻合。盆栽实验证明,NⅡ可显著提高肥旱耕人为土壤上作物对N肥的利用率。  相似文献   
8.
9.
10.
This study was designed to detect tissue non-specific alkaline phosphatase (TNSALP) by Azo-dye staining, calcium by glyoxal bis (2-hydroxyanil) (GBHA) staining, bone sialoprotein (BSP) and osteopontin (OPN) by immunoperoxidase staining in developing rat molars, and also to discuss the mineralization process during acellular cementogenesis. To restrain a reduction in histochemical and immunohistochemical reactions, fresh-frozen undemineralized sections were prepared. Where the epithelial sheath was intact, TNSALP reaction was observed in the dental follicle, but not in the epithelial sheath. With the onset of dentin mineralization, the BSP- and OPN-immunoreactive, initial cementum layer appeared. At this point, cementoblasts had shown intense TNSALP reaction and GBHA reactive particles (=calcium-GBHA complex) appeared on the root surface. With further development, the reaction of TNSALP and GBHA became weak on the root surface. Previous studies have shown that the initial cementum is fibril-poor and that matrix vesicles and calciferous spherules appear on the root surface only during the initial cementogenesis. The findings mentioned above suggest that: during the initial cementogenesis, cementoblasts release matrix vesicles which result in calciferous spherules, corresponding to the GBHA reactive particles. The calciferous spherules trigger the mineralization of the initial cementum. After principal fiber attachment, mineralization advances along collagen fibrils without matrix vesicles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号