首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   2篇
  国内免费   4篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   9篇
  2015年   3篇
  2014年   8篇
  2013年   2篇
  2012年   1篇
  2011年   5篇
  2010年   6篇
  2009年   7篇
  2008年   2篇
  2007年   9篇
  2006年   11篇
  2005年   6篇
  2004年   5篇
  2003年   6篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1991年   1篇
排序方式: 共有95条查询结果,搜索用时 15 毫秒
1.
Cyanobacteria can produce toxic metabolites known as cyanotoxins. Common and frequently investigated cyanotoxins include microcystins (MCs), nodularin (NOD) and saxitoxins (STXs). During the summer of 2011 extensive cyanobacterial growth was found in several fishponds in Serbia. Sampling of the water and fish (common carp, Cyprinus carpio) was performed. Water samples from 13 fishponds were found to contain saxitoxin, microcystin, and/or nodularin. LC–MS/MS showed that MC-RR was present in samples of fish muscle tissue. Histopathological analyses of fish grown in fishponds with cyanotoxin production showed histopathological damage to liver, kidney, gills, intestines and muscle tissues. This study is among the first so far to report severe hyperplasia of intestinal epithelium and severe degeneration of muscle tissue of fish after cyanobacterial exposure. These findings emphasize the importance of cyanobacterial and cyanotoxin monitoring in fishponds in order to recognize cyanotoxins and their potential effects on fish used for human consumption and, further, on human health.  相似文献   
2.
Toxic cyanobacterial harmful algal blooms (CyanoHABs) have posed serious water use and public health threats because of the toxins they produce, such as the microcystins (MCs). The direct physical effects of turbulence on MCs, however, have not yet been addressed and is still poorly elucidated. In this study, a 6-day mesocosm experiment was carried out to evaluate the effects of wind wave turbulence on the competition of toxic Microcystis and MCs production in highly eutrophicated and turbulent Lake Taihu, China. Under turbulent conditions, MCs concentrations (both total and extracellular) significantly increased and reached a maximum level 3.4 times higher than in calm water. Specifically, short term (∼3 days) turbulence favored the growth of toxic Microcystis species, allowing for the accumulation of biomass which also triggered the increase in MCs toxicity. Moreover, intense turbulence raises the shear stress and could cause cell mechanical damage or cellular lysis resulting in cell breakage and leakage of intracellular materials including the toxins. The results indicate that short term (∼3 days) turbulence is beneficial for MCs production and release, which increase the potential exposure of aquatic organisms and humans. This study suggests that the importance of water turbulence in the competition of toxic Microcystis and MCs production, and provides new perspectives for control of toxin in CyanoHABs-infested lakes.  相似文献   
3.
The filamentous cyanobacterium Planktothrix rubescens produces secondary metabolites called microcystins (MC) that are potent toxins for most eukaryotes, including zooplankton grazers, cattle and humans. P. rubescens occurs in many deep and thermally stratified lakes throughout Europe. In Lake Zurich (Switzerland), it re-appeared in the 1970s concomitant with decreasing eutrophication. Since then, P. rubescens has become the dominant species in this major drinking water reservoir, where it forms massive metalimnetic blooms during late summer. These cyanobacteria harbor subpopulations of non-MC producers, but little is known about the environmental factors affecting the success of such genotypes. The non-MC-producing subpopulation of P. rubescens was studied using a quantitative real-time PCR (qPCR) assay on the MC synthetase (mcy) gene cluster that targets a deletion on the mcyH and mcyA genes, which inactivates MC biosynthesis. Two complementary qPCR assays were used to assess the total population abundance (based on the 16S rDNA gene) and the mcy gene copy number (based on a conserved region in the adenylation domain of the mcyB gene). The objective was to evaluate the seasonal patterns of the share of non-MC-producing filaments in the total P. rubescens population. The mcyHA mutants were present in low proportions (up to 14%) throughout the year. Their highest relative abundances occurred during the winter mixis, when total concentrations of P. rubescens were minimal. The MC deficient mutants seemed to better survive in sparse populations, possibly because of lower grazing pressure and a consequently reduced need for MC-mediated protection. Alternatively, the mutants might cope better with the sub-optimal, stressful pressure and light conditions during the winter mixis. Altogether, our results suggest that subtle trade-offs might seasonally determine the proportions of non-MC producers within P. rubescens populations.  相似文献   
4.
5.
Microcystins (MCs) produced by some freshwater cyanobacterial species possess potent liver toxicity as evidenced by acute neutrophil infiltration. Here, we investigate the ability of three structurally distinct toxins (MC-LA, MC-LR, and MC-YR) to evoke neutrophil recruitment per se and their effects on migration pathways. Intravital microscopic studies showed that topical application of only MC-LR enhanced the numbers of rolling and adhered leukocytes in the endothelium of postcapillary mesenteric venules. The latter effects may be dependent upon induction of the synthesis and expression of l-selectin and β2-integrin in neutrophils, as assessed by flow cytometry and RT-PCR, respectively. Conversely, the three toxins promoted direct locomotion of neutrophils and enhanced their migration in response to fMLP, as measured by Boyden chamber assays, and increased intracellular calcium, a messenger in the chemotaxic process. In conclusion, our results show that MCs act on specific pathways of neutrophil recruitment, indicating their potential effect on neutrophils activation.  相似文献   
6.
In temperate latitudes, toxic cyanobacteria blooms often occur in eutrophied ecosystems during warm months. Many common bloom-forming cyanobacteria have toxic and non-toxic strains which co-occur and are visually indistinguishable but can be quantified molecularly. Toxic Microcystis cells possess a suite of microcystin synthesis genes (mcyAmcyJ), while non-toxic strains do not. For this study, we assessed the temporal dynamics of toxic and non-toxic strains of Microcystis by quantifying the microcystin synthetase gene (mcyD) and the small subunit ribosomal RNA gene, 16S (an indicator of total Microcystis), from samples collected from four lakes across the Northeast US over a two-year period. Nutrient concentrations and water quality were measured and experiments were conducted which examined the effects of elevated levels of temperatures (+4 °C), nitrogen, and phosphorus on the growth rates of toxic and non-toxic strains of Microcystis. During the study, toxic Microcystis cells comprised between 12% and 100% of the total Microcystis population in Lake Ronkonkoma, NY, and between 0.01% and 6% in three other systems. In all lakes, molecular quantification of toxic (mcyD-possessing) Microcystis was a better predictor of in situ microcystin levels than total cyanobacteria, total Microcystis, chlorophyll a, or other factors, being significantly correlated with the toxin in every lake studied. Experimentally enhanced temperatures yielded significantly increased growth rates of toxic Microcystis in 83% of experiments conducted, but did so for non-toxic Microcystis in only 33% of experiments, suggesting that elevated temperatures yield more toxic Microcystis cells and/or cells with more mcyD copies per cell, with either scenario potentially yielding more toxic blooms. Furthermore, concurrent increases in temperature and P concentrations yielded the highest growth rates of toxic Microcystis cells in most experiments suggesting that future eutrophication and climatic warming may additively promote the growth of toxic, rather than non-toxic, populations of Microcystis, leading to blooms with higher microcystin content.  相似文献   
7.
微囊藻毒素合成酶基因的PCR检测方法   总被引:1,自引:0,他引:1  
针对微囊藻毒素合成酶基因簇的核酸序列,筛选特异性引物,探索一种适用于自然水样中微囊藻产毒潜能检测的全细胞PCR方法。经灵敏度测试表明,这种PCR方法的检测下限相当于100cells。该方法不需要提取基因组DNA,检测所需水样量少,具有操作简便、快速、成本低、灵敏度高等优点,能应用于水库等饮用水源水体中具有产毒潜能的微囊藻的检测。  相似文献   
8.

Background

Cyanobacteria constitute a serious threat to freshwater ecosystems by producing toxic secondary metabolites, e.g. microcystins. These microcystins have been shown to harm livestock, pets and humans and to affect ecosystem service and functioning. Cyanobacterial blooms are increasing worldwide in intensity and frequency due to eutrophication and global warming. However, Daphnia, the main grazer of planktonic algae and cyanobacteria, has been shown to be able to suppress bloom-forming cyanobacteria and to adapt to cyanobacteria that produce microcystins. Since Daphnia’s genome was published only recently, it is now possible to elucidate the underlying molecular mechanisms of microcystin tolerance of Daphnia.

Results

Daphnia magna was fed with either a cyanobacterial strain that produces microcystins or its genetically engineered microcystin knock-out mutant. Thus, it was possible to distinguish between effects due to the ingestion of cyanobacteria and effects caused specifically by microcystins. By using RNAseq the differentially expressed genes between the different treatments were analyzed and affected KOG-categories were calculated. Here we show that the expression of transporter genes in Daphnia was regulated as a specific response to microcystins. Subsequent qPCR and dietary supplementation with pure microcystin confirmed that the regulation of transporter gene expression was correlated with the tolerance of several Daphnia clones.

Conclusions

Here, we were able to identify new candidate genes that specifically respond to microcystins by separating cyanobacterial effects from microcystin effects. The involvement of these candidate genes in tolerance to microcystins was validated by correlating the difference in transporter gene expression with clonal tolerance. Thus, the prevention of microcystin uptake most probably constitutes a key mechanism in the development of tolerance and adaptation of Daphnia. With the availability of clear candidate genes, future investigations examining the process of local adaptation of Daphnia populations to microcystins are now possible.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-776) contains supplementary material, which is available to authorized users.  相似文献   
9.
One of the most serious problems related to water eutrophication is the occurrence of increasingly frequent blooms of toxic cyanobacteria in freshwater ecosystems. Microcystin (MCYST) molecular markers may be used for the detection of toxic cyanobacteria, both cultivated strains and environmental samples, independently of their taxonomic category and production of the toxin at the moment of analysis. Sixty Microcystis spp. strains from 15 water reservoirs of south, southeastern and northeastern Brazil were analyzed by polymerase chain reaction (PCR) with oligonucleotide primers for mcyB gene of the operon that encodes a microcystin synthetase. It was found out that the presence of a unique amplified product of approximately 780 bp in 18 strains, indicated the presence of the microcystin-producing genotype. There was correspondence between the presence of the mcyB gene and microcystin determined by ELISA. Eight reservoirs contained toxic strains, two of these reservoirs being used mainly for public water supply. The coexistence of a mixture of toxic and non-toxic genotypes in populations of several reservoirs was found. Thus, it is evident that Microcystis populations present in blooms compose a mosaic, with genetically different individuals within the same population, each one, possibly, with its own tolerance to environmental factors and with distinct toxicity potential.  相似文献   
10.
Microcystins are highly toxic cyanotoxins responsible for plant, animal and human poisoning. Exposure to microcystins, mainly through drinkable water and contaminated food, is a current world health concern. Although it is quite challenging, the synthesis of these potent cyanotoxins, analogs and derivatives helps to evaluate their toxicological properties and to elucidate their binding mechanisms to their main targets Protein Phosphatase-1 (PP1) and -2A (PP2A). This review focuses on synthetic approaches to prepare microcystins and analogs and compiles structure–activity relationship (SAR) studies that describe the unique features of microcystins that make them so potent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号