首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
  2020年   1篇
  2016年   3篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
目的:观察自制载多西紫杉醇脂质微泡联合超声对人肝癌HepG2细胞的抑制作用。方法:通过薄膜分散法制备载多西紫杉醇脂质微泡,观察其形态,测定粒径大小、包封率、载药量及稳定性等性质;将人肝癌HepG2细胞随机分为5组,对照组、多西紫杉醇组(DOC组)、多西紫杉醇联合超声组(DOC+US组)、载多西紫杉醇脂质微泡组(DLLM组)、载多西紫杉醇脂质微泡联合超声组(DLLM+US组),CCK-8法检测细胞毒性,倒置显微镜观察细胞凋亡的形态,DAPI荧光染色法观察凋亡细胞核的改变。结果:载多西紫杉醇脂质微泡形态光滑圆整,无黏连;粒径分布范围为170~590 nm,平均粒径为350 nm;Zeta电位为-5.2 mV;微泡的包封率为80.0%,载药量为18.5%;4℃条件下保存14天性质稳定;DLLM+US组较其他各组对肿瘤细胞有更为明显的抑制增殖及诱导凋亡效应(P〈0.01)。结论:自制载多西紫杉醇脂质微泡粒径小,包封率高,稳定性好,此微泡联合超声对人肝癌HepG2细胞有明显抑制作用,载多西紫杉醇脂质微泡有望成为一种新型抗肿瘤给药途径。  相似文献   
2.
随着分子生物学、蛋白组学、基因组学、计算机工程学等学科的不断进步,交叉融合,分子成像逐渐登上历史的舞台,成为研究热点。而超声分子成像随之迅猛发展,近年来超声微泡制备技术的成熟和超声造影检查技术的不断进步,超声造影不再局限获取组织的血流灌注信息,而是逐渐成为特异性的超声分子成像。目前使用超声对比剂研究分子成像和靶向治疗仍处于初级阶段。但是,各种分子成像技术的不断革新和发展,超声分子成像面临着重大的挑战,而在挑战背后同样面临着难逢的机遇。超声医学和分子生物学的迅猛发展,超声分子成像必将成为诊断和治疗疾病的新的手段和方法。超声造影剂仍有许多未能解决的问题,像如何延长微泡的半衰期、如何增强微泡的敏感性和特异性,如何增强目的基因的表达,如何处理组织损伤和高频超声之间的关系等问题,但是如果能解决这些问题,超声造影在现代医学的诊断和治疗中将起到重要的作用。现将超声分子成像综述如下。  相似文献   
3.
Previous studies have indicated that microbubbles prepared by co-axial electrohydrodynamic atomisation (CEHDA) are less stable than those prepared by other methods such as sonication and microfluidic techniques. The aim of this investigation was to determine the reasons for this observation and how this might be addressed in future work. Microbubbles were prepared by CEHDA using (i) a glycerol–air system, (ii) a glycerol–Tween 80–air system and (iii) a glycerol–zirconia–air system and also by simple agitation of (i) and (ii), in order to compare the effect upon the dissolution rate of microbubbles of different materials and processing methods. Both theoretical examination and the experimental results indicated that all three quantities were important in controlling the rate of microbubble dissolution, namely: surface tension at the gas/liquid interface, the effective diffusivity of gas through this interface and the initial concentration of gas dissolved in the surrounding liquid. However, it was the difference in gas concentration in the surrounding liquid that was indicated as the primary reason for the differences in stability observed with different processing methods. It was concluded, therefore, that improved stability could be achieved for microbubbles prepared using CEHDA by saturating the collecting fluid with gas and/or maintaining a high concentration of microbubbles during collection.
Eleanor StrideEmail:
  相似文献   
4.
目的:探索蔗糖酯类超声造影剂的制备方法,并研究其造影效果。方法:采用声振法制备蔗糖酯类造影剂,将F68和SE-5按一定质量比称取配置微泡包膜材料,以微泡浓度为指标进行制备优化,将F68和SE-5按1:1质量比称取,将其配置成乳状液置入声振仪,以不同超声功率(200 W、400 W、600 W及800 W),不同声振时间(30 s、60 s、90 s、120 s、150 s、180 s、210 s、240 s、270 s及300 s)进行声振处理。将F68和SE-5分别按6:1、5:1、4:1、3:1、2:1、1:1、2:1、3:1及4:1的质量比称取制成乳状液,选择最佳声振功率与声振时间,筛选最佳溶液配比。选用优化条件下制备的微泡,观察兔肝脏造影效果。结果:蔗糖酯类造影剂的最佳制备条件为:泊洛沙姆188(Pluronic F68)和蔗糖酯-5(SE-5)的配比为2:1,声振仪功率为600 W,声振持续时间为240 s。注射造影剂后兔肝脏超声造影图像清晰,回声强度明显增强。结论:通过优化制备工艺,制备出的蔗糖酯类微泡浓度及直径均符合超声造影要求,具有良好显影效果。  相似文献   
5.
Sonoporation has not been widely explored as a strategy for the transfection of heterologous genes into notoriously difficult‐to‐transfect mammalian cell lines such as B cells. This technology utilizes ultrasound to create transient pores in the cell membrane, thus allowing the uptake of extraneous DNA into eukaryotic and prokaryotic cells, which is further enhanced by cationic microbubbles. This study investigates the use of sonoporation to deliver a plasmid encoding green fluorescent protein (GFP) into three human B‐cell lines (Ramos, Raji, Daudi). A higher transfection efficiency (TE) of >42% was achieved using sonoporation compared with <3% TE using the conventional lipofectamine method for Ramos cells. Upon further antibiotic selection of the transfected population for two weeks, we successfully enriched a stable population of GFP‐positive Ramos cells (>70%). Using the same strategy, Raji and Daudi B cells were also successfully transfected and enriched to 67 and 99% GFP‐positive cells, respectively. Here, we present sonoporation as a feasible non‐viral strategy for stable and highly efficient heterologous transfection of recalcitrant B‐cell lines. This is the first demonstration of a non‐viral method yielding transfection efficiencies significantly higher (42%) than the best reported values of electroporation (30%) for Ramos B‐cell lines.  相似文献   
6.
We have shown previously that perfluorocarbon-exposed sonicated dextrose albumin (PESDA) microbubbles bind to injured vascular tissue and can be detected with ultrasound imaging techniques. Prior studies have shown that scavenger receptors (SRs) are regulators of innate and adaptive immune responses and are involved in the progression of vascular disease such as atherosclerosis. In this study, we sought to determine the molecular mechanism of PESDA binding to balloon-injured vasculature. RT-PCR analysis of angioplastied aortas demonstrated a significantly (p ≤ 0.01) increased expression of SRs. Binding to SRs was confirmed using SR-expressing CHO cells, and this binding was blocked by competitive inhibition with the SR-binding ligands oxidized LDL and malondialdehyde-acetaldehyde-modified LDL. Confocal imaging confirmed the co-localization of PESDA microbubbles to CD36, SRB-1, and Toll-like receptor 4, but not to monocytes/macrophages. This study demonstrates that PESDA binds to SRs and that this binding is in major part dependent upon the oxidized nature of PESDA microbubble shell proteins. The extent of SR mRNA expression was increased with injury and associated with microbubble retention as defined by scanning electron microscopy and immunohistochemistry. These findings clarify the mechanisms of how albumin-based microbubbles bind to injured and inflamed vasculature and further support the potential of this imaging technique to detect early vascular innate inflammatory pathophysiologic processes.  相似文献   
7.
8.
Abstract

It is known that Phosphatidyl choline-Phosphatidyl glycerol mixtures can be used for liposome formulations, making them less leaky than liposomes with only one lipid. We hypothesized that this might also be the case for bubbles, which can be used as ultrasound (US) contrast agents. Therefore, we have compared a series of mixed distearoyl phosphatidylcholine-distearoyl phosphatidylglycerol (DSPC-DPSG) bubbles and with bubbles containing either DSPC or DSPG (and distearoyl ethanolamine-polyethyleneglycol 2000, DSPE-PEG2k). Here, we describe the development, examination of stability in vitro and attenuation of broad frequency US pulses. Novel lipid-stabilized freeze-dried formulations for US applications, using the phospholipids DSPC, DSPG, and PEGylated DSPE-PEG2k and perfluoropropane gas were developed. It was found that the bubbles could effectively be preserved by freeze-drying and then re-constituted by addition of water. Average bubble sizes were around 2?µm for all bubbles after re-constitution. Bubble stability was assessed by evaluating the decay of the US backscattering signal in vitro. Bubbles containing DSPG were more stable than bubbles with only DSPC. The composition DSPC:DSPG:DSPE-PEG2k 30:60:10 (molar ratio) was the most stable with an effective half-life of 9.12?min, compared to bubbles without DSPG, which had half-life of 2.05?min. Bubble attenuation of US depended highly on the compositions. Bubbles without DSPG had the highest attenuation indicating higher oscillation the most but were also destroyed by higher energy US. No bubbles with DSPG showed any indication of destruction but all had increased attenuations to varying degrees, DSPC:DSPG:DSPE-PEG2k 45:45:10 showed the least attenuation.  相似文献   
9.
Novel methods for preparing phospholipid coated microbubbles   总被引:3,自引:0,他引:3  
Two new methods for preparing phospholipid coated microbubble suspensions are elucidated. Firstly, co-axial electrohydrodynamic atomisation was utilized to generate 3-7 microm diameter microbubbles. Secondly, a specially designed and constructed T-junction device was used to prepare monodisperse microbubbles. Characteristics of microbubbles prepared by these two methods are compared with those obtained by sonication of the phospholipid suspension.  相似文献   
10.
Contrast enhancement by microbubble infusion has proven its applicability in the field of diagnostic ultrasound. Recent studies also indicate a therapeutic effect of the combined use of ultrasound and microbubbles. Results from animal studies demonstrate that diagnostic ultrasound in combination with intravenous microbubbles can dissolve thrombi. So far, this effect has never been tested in patients with an acute ST-elevation myocardial infarction (STEMI). We recently launched a pilot study in acute STEMI patients to assess safety, feasibility and efficacy of the treatment in this patient group with transthoracic three-dimensional diagnostic ultrasound and intravenous microbubbles immediately after prehospital thrombolysis, but prior to primary percutaneous coronary intervention.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号