首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   913篇
  免费   25篇
  国内免费   8篇
  2023年   7篇
  2022年   12篇
  2021年   6篇
  2020年   17篇
  2019年   16篇
  2018年   17篇
  2017年   24篇
  2016年   18篇
  2015年   20篇
  2014年   29篇
  2013年   41篇
  2012年   11篇
  2011年   36篇
  2010年   27篇
  2009年   41篇
  2008年   45篇
  2007年   39篇
  2006年   54篇
  2005年   36篇
  2004年   30篇
  2003年   44篇
  2002年   31篇
  2001年   18篇
  2000年   18篇
  1999年   15篇
  1998年   5篇
  1997年   13篇
  1996年   7篇
  1995年   12篇
  1994年   10篇
  1993年   5篇
  1992年   9篇
  1991年   13篇
  1990年   6篇
  1989年   6篇
  1987年   5篇
  1985年   27篇
  1984年   19篇
  1983年   18篇
  1982年   18篇
  1981年   18篇
  1980年   19篇
  1979年   12篇
  1978年   10篇
  1977年   9篇
  1976年   10篇
  1975年   18篇
  1974年   7篇
  1973年   9篇
  1972年   3篇
排序方式: 共有946条查询结果,搜索用时 15 毫秒
1.
2.
Plant material is a rich source of valuable compounds such as flavanones. Their different forms influence bioavailability and biological activity, causing problems with the selection of plant material for specific purposes. The purpose of this research was to determine selected flavanone (eriodictyol, naringenin, liquiritigenin, and hesperetin) enantiomer contents in free form and bonded to glycosides by an RP‐UHPLC‐ESI‐MS/MS method. Different parts (stems, leaves, and flowers) of goldenrod (Solidago virgaurea L.), lucerne (Medicago sativa L.), and phacelia (Phacelia tanacetifolia Benth.) were used. The highest content of eriodictyol was found in goldenrod flowers (13.1 μg/g), where it occurred mainly as the (S)‐enantiomer, and the greatest proportion of the total amount was bonded to glycosides. The richest source of naringenin was found to be lucerne leaves (4.7 μg/g), where it was mainly bonded to glycosides and with the (S)‐enantiomer as the dominant form. Liquiritigenin was determined only in lucerne, where the flowers contained the highest amount (1.2 μg/g), with the (R)‐enantiomer as dominant aglycone form and the (S)‐enantiomer as the dominant glycosylated form. The highest hesperetin content was determined in phacelia leaves (0.38 μg/g), where it was present in the form of a glycoside and only as the (S)‐enantiomer. A comparison of the different analyte forms occurring in different plant parts was performed for the first time.  相似文献   
3.
Iridoid glycosides are plant defence compounds that are deterrent and/or toxic for unadapted herbivores but are readily sequestered by dietary specialists of different insect orders. Hydrolysis of iridoid glycosides by β‐glucosidase leads to protein denaturation. Insect digestive β‐glucosidases thus have the potential to mediate plant–insect interactions. In the present study, mechanisms associated with iridoid glycoside tolerance are investigated in two closely‐related leaf beetle species (Coleoptera: Chrysomelidae) that feed on iridoid glycoside containing host plants. The polyphagous Longitarsus luridus Scopoli does not sequester iridoid glycosides, whereas the specialist Longitarsus tabidus Fabricius sequesters these compounds from its host plants. To study whether the biochemical properties of their β‐glucosidases correspond to the differences in feeding specialization, the number of β‐glucosidase isoforms and their kinetic properties are compared between the two beetle species. To examine the impact of iridoid glycosides on the β‐glucosidase activity of the generalist, L. luridus beetles are kept on host plants with or without iridoid glycosides. Furthermore, β‐glucosidase activities of both species are examined using an artificial β‐glucosidase substrate and the iridoid glycoside aucubin present in their host plants. Both species have one or two β‐glucosidases with different substrate affinities. Interestingly, host plant use does not influence the specific β‐glucosidase activities of the generalist. Both species hydrolyse aucubin with a much lower affinity than the standard substrate. The neutral pH reduces the β‐glucosidase activity of the specialist beetles by approximately 60% relative to its pH optimum. These low rates of aucubin hydrolysis suggest that the ability to sequester iridoid glycosides has evolved as a key to potentially preventing iridoid glycoside hydrolysis by plant‐derived β‐glucosidases.  相似文献   
4.
Three new compounds, 4-{erythro-2-[3-(4-hydroxyl-3-methoxyphenyl)-3-O-β-d-glucopyranosyl-propan-1-ol]}-O-medioresinol (1), (7⿳E,9⿳E,1⿳R*,3⿳S*,5⿳R*,6⿳S*)-5-O-caffeoyl-3-O-dihydrophaseicoylquinic acid (2), and (7⿳E,9⿳E,1⿳R*,3⿳S*,5⿳R*,6⿳S*)-5-O-caffeoyl-4-O-dihydrophaseicoylquinic acid (3), were isolated from Chinese folk herb Erycibe obtusifolia together with six known compounds (4⿿9). Their structures were elucidated on the basis of comparisons of literatures and extensive spectroscopic analysis, including UV, IR, HRMS, and 1D and 2D NMR techniques. Further, the cytotoxicities of these compounds were evaluated against five cell lines (HCT-8, Bel-7402, BGC-823, A549, and A2780), but they were inactive against these tumor cell lines (IC50 > 10 μmol/L).  相似文献   
5.
The flavonoids of five Geranium, fourteen Erodium and four Monsonia species were studied. Quercetin was the most common aglycone with lesse  相似文献   
6.
Chevalierinosides B (1) and C (2), two new isoflavonoid glycosides, characterized as biochanin A 7-O-[β-d-apiofuranosyl-(1→2)-β-d-glucopyranoside] and genistein 7-O-[β-d-apiofuranosyl-(1→2)-β-d-glucopyranoside], together with the known isoflavonoids, chevalierinoside A (3) and genistein 7-O-β-d-glucopyranoside (4), kaempferol 3-O-β-d-glucopyranoside (5) and triterpenes, friedelin (6), betulinic acid (7), 30-oxobetulinic acid (8), 30-hydroxybetulinic acid (9), were isolated from the stem bark of Antidesma laciniatum Muell. Arg. (syn. Antidesma chevalieri Beille). Their structures were established by direct interpretation of their spectral data, mainly HR-TOFESIMS, 1D-NMR (1H, 13C and DEPT) and 2D-NMR (COSY, NOESY, TOCSY, HSQC and HMBC), and by comparison with the literature.  相似文献   
7.
Sullivantia species were found to produce quercetin 3-O-glycosides, several of which contain glucuronic acid, as well as pedalitin (6-hydroxy-7-O-methyl luteolin), pedalitin 6-O-glycosides, and small amounts of luteolin. Sullivantia has a unique combination of compounds that distinguishes it from other genera in the Saxifraginae for which flavonoid data are available. The nature of the flavonoid compounds is in accordance with a general trend within the Saxifragaceae of reduction and replacement of flavonols by flavones.  相似文献   
8.
An examination of four species of Cirsium disclosed the presence of two new flavonoids in C. lineare. The structure of one was 5,4′-dihydroxy-6,7,3′-trimethoxyflavone (cirsilineol) 4′-monoglucoside and the other 5,3′,4′-trihydroxy-6,7-dimethoxyflavone (cirsiliol) 4′-monoglucoside. Luteolin 7-glucoside was found in C. suffultum, and pectolinarin and linarin in C. kamtschaticum and C. pectinellum.  相似文献   
9.
Feruloyl esterase (FAE)-catalyzed esterification reaction is as a potential route for the biosynthesis of feruloylated oligosaccharides as functional ingredients. Immobilization of FAE from Humicola insolens on metal chelate-epoxy supports was investigated. The study of effects of immobilization parameters using response surface methodology revealed the significance of enzyme/support ratio (3.25-29.25 mg/g support), immobilization time (14-38 h), buffer molarity (0.27-1.25 M) and pH (4.0-8.0). The interactions between enzyme-to-support ratio/buffer molarity and enzyme-to-support ratio/pH were found to be critical for the modulation of the immobilization activity yield and the retention of specific activity, respectively. Optimum conditions for FAE-immobilization on metal chelate Sepabeads® EC-EP R were identified to be 22.75 mg FAE/g support, pH of 5.0, 27.7 h and buffer molarity of 0.86 M. At these conditions, an activity yield of 82.4%, a specific activity retention of 143.4%, and an enzyme activity of 395.4 μmol/min. g support were achieved. Further incubation of the immobilized FAE at pH 10.0 improved its thermostability. Increasing the pore size of the epoxy support improved the retention of FAE hydrolytic activity and the esterifying efficiency of the immobilized biocatalyst. Optimally immobilized and stabilized FAE on metal chelate-epoxy support retained up to 92.9% of the free enzyme feruloylation efficiency to xylooligosaccharides..  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号