首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   7篇
  国内免费   5篇
  2023年   1篇
  2022年   5篇
  2021年   8篇
  2020年   4篇
  2019年   3篇
  2017年   2篇
  2016年   4篇
  2015年   10篇
  2014年   10篇
  2013年   27篇
  2012年   5篇
  2011年   9篇
  2010年   6篇
  2009年   10篇
  2008年   13篇
  2007年   12篇
  2006年   12篇
  2005年   6篇
  2004年   8篇
  2003年   3篇
  2002年   11篇
  2001年   6篇
  2000年   2篇
  1999年   4篇
  1998年   5篇
  1997年   6篇
  1996年   4篇
  1995年   5篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1985年   1篇
  1984年   2篇
  1980年   1篇
排序方式: 共有217条查询结果,搜索用时 15 毫秒
1.
1,3-Propanediol (PAD) was fed to rats for 15 weeks, and its effects on hepatic and testicular DNA were studied. The control rats were fed a casein-based diet that contained 10% tocopherol-stripped corn oil with 30 IU of d,l-α-tocopherol acetate/kg; the experimental rats were fed the same diet with 500 ppm of PAD. Homogenates prepared from the livers of each group of rats converted 1,3-propanediol to malondialdehyde (MDA) with equal efficacy, but homogenates of testes did not catalyze this conversion. After 10–15 weeks of feeding the diets, the hepatic DNA of the rats fed PAD had less template activity, more bound tryptophan and more DNA-protein and interstrand DNA cross-links than that of the control rats. As measured by template activity and bound tryptophan, testicular DNA of the experimental rats was not different from that of the control rats; however, there was slightly more cross-linking in the testicular DNA of experimental rats than in that of control rats. Testes of the experimental rats contained more lipid-soluble fluorophores than did those of the control rats. The results are consistent with the conclusion that PAD was converted to MDA in vivo and that MDA is the reactive species that caused the observed biological damage.  相似文献   
2.
When polyunsaturated fatty acids (PUFAs) in biomembrane are peroxidized, a great diversity of aldehydes is formed, and some of which are highly reactive. Thus they are thought to have biological impacts in stressed plants; however, the detailed mechanism of generation and biochemical effects are unknown. In this study, we show that chloroplasts are major organelles in which malondialdehyde (MDA) generated from peroxidized linolenic acid modifies proteins in heat-stressed plants. First, to clarify the biochemical process of MDA generation from PUFAs and its attachment to proteins, we carried out in vitro experiments using model proteins (BSA and Rubisco) and methylesters of C18 PUFAs that are major components of plant biomembrane. Protein modification was detected by Western blotting using monoclonal antibodies that recognize MDA binding to proteins. Results showed that peroxidation of linolenic acid methylester by reactive oxygen species was essential for protein modification by MDA, and the MDA modification was highly dependent on temperature, leading to a loss of Rubisco activity. When isolated spinach thylakoid membrane was peroxidized at 37 degrees C, oxygen-evolving complex 33kDa protein (OEC33) was modified by MDA. These model experiments suggest that protein modification by MDA preferentially occurs under higher temperatures and oxidative conditions, thus we examined protein modification in heat-stressed plants. Spinach plants were heat-stressed at 40 degrees C under illumination, and modification of OEC33 protein by MDA was detected. In heat-stressed Arabidopsis plants, light-harvesting complex protein was modified by MDA under illumination. This modification was not observed in linolenic acid-deficient mutants (fad3fad7fad8 triple mutant), suggesting that linolenic acid is a major source of protein modification by MDA in heat-stressed plants.  相似文献   
3.
《Theriogenology》2015,84(9):1402-1407
High ambient temperature during summer in tropical and subtropical countries predisposes water buffaloes (Bubalus bubalis) to develop oxidative stress having antigonadotropic and antisteroidogenic actions. Melatonin is a regulator of seasonal reproduction in photoperiodic species and highly effective antioxidant and free radical scavenger. Therefore, a study was designed to evaluate the effect of sustained-release melatonin on biomarkers of oxidative stress i.e., the serum malondialdehyde (MDA) and nitric oxide (NO), and the total antioxidant capacity (TAC). For the study, postpartum buffaloes diagnosed as summer anestrus (absence of overt signs of estrus, concurrent rectal examination, and RIA for serum progesterone) were grouped as treated (single subcutaneous injection of melatonin at 18 mg/50 kg body weight dissolved in sterilized corn oil as vehicle, n = 20) and untreated (subcutaneous sterilized corn oil, n = 8). Blood sampling for estimation of serum TAC and MDA (mmol/L) and NO (μmol/L) was carried out at 4 days of interval from 8 days before treatment till 28 days after treatment or for the ensuing entire cycle length. Results showed serum TAC concentration was higher in the treatment group with a significant (P < 0.05) increasing trend, whereas MDA and NO revealed a significant (P < 0.05) decline. Serum MDA and NO were higher in control compared with those of treatment group. Moreover, buffaloes in the treatment group showed 90% estrus induction with 18.06 ± 1.57 days mean interval from treatment to the onset of estrus. These results report that melatonin has a protective effect by elevating antioxidant status and reducing oxidative stress resulting in the induction of cyclicity in summer-stressed anestrous buffaloes.  相似文献   
4.
Abstract

A series of anti-thrombotic aryl thienyl-ketones and -thioketones was assayed in vitro for their inhibitory effect on malondialdehyde (MDA) production induced by arachidonic acid in human platelets. For several compounds MDA formation was strongly inhibited indicating that the anti-platelet target was situated on the cyclooxygenase pathway. A comparison between the inhibition constant K1 and the IC50 values revealed competitive inhibition kinetics. The molecular structure of one active compound was analysed by X-ray diffraction and theoretical calculations to provide information on its electronic and lipophilic properties.  相似文献   
5.
The purpose of this work was to investigate the protective effect of five essential oils (EOs); Rosmarinus officinalis, Thymus vulgaris, Origanum compactum Benth., Eucalyptus globulus Labill. and Ocimum basilicum L.; against oxidative stress induced by hydrogen peroxide in Saccharomyces cerevisiae. The chemical composition of the EOs was analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS). The in vitro antioxidant activity was evaluated and the protective effect of EOs was investigated. Yeast cells were pretreated with different concentrations of EOs (6.25–25 µg/ml) for an hour then incubated with H2O2 (2 mM) for an additional hour. Cell viability, antioxidants (Catalase, Superoxide dismutase and Glutathione reductase) and metabolic (Succinate dehydrogenase) enzymes, as well as the level of lipid peroxidation (LPO) and protein carbonyl content (PCO) were evaluated. The chemical composition of EOs has shown the difference qualitatively and quantitatively. Indeed, O. compactum mainly contained Carvacrol, O. basilicum was mainly composed of Linalool, T. vulgaris was rich in thymol, R. officinalis had high α-Pinene amount and for E. globulus, eucalyptol was the major compound. The EOs of basil, oregano and thyme were found to possess the highest amount of total phenolic compounds. Moreover, they have shown the best protective effect on yeast cells against oxidative stress induced by H2O2. In addition, in a dose dependent manner of EOs in yeast medium, treated cells had lower levels of LPO, lower antioxidant and metabolic enzymes activity than cells exposed to H2O2 only. The cell viability was also improved. It seems that the studied EOs are efficient natural antioxidants, which can be exploited to protect against damages and serious diseases related to oxidative stress.  相似文献   
6.
7.
Inflammation is widely accepted to play a major role in atherosclerosis and other cardiovascular diseases. However, the exact mechanism(s) by which inflammation exerts its pathogenic effect remains poorly understood. A number of oxidatively modified proteins have been associated with cardiovascular disease. Recently, attention has been given to the oxidative compound of malondialdehyde and acetaldehyde, two reactive aldehydes known to covalently bind and adduct macromolecules. These products have been shown to form stable malondialdehyde–acetaldehyde (MAA) adducts that are reactive and induce immune responses. These adducts have been found in inflamed and diseased cardiovascular tissue of patients. Antibodies to these adducted proteins are measurable in the serum of diseased patients. The isotypes involved in the immune response to MAA (i.e., IgM, IgG, and IgA) are predictive of atherosclerotic disease progression and cardiovascular events such as an acute myocardial infarction or coronary artery bypass grafting. Therefore, it is the purpose of this article to review the past and current knowledge of aldehyde-modified proteins and their role in cardiovascular disease.  相似文献   
8.
Free radicals are associated with glioma tumors. Here, we report on the ability of an anticancer nitrone compound, OKN-007 [Oklahoma Nitrone 007; a disulfonyl derivative of α-phenyl-tert-butyl nitrone (PBN)] to decrease free radical levels in F98 rat gliomas using combined molecular magnetic resonance imaging (mMRI) and immunospin-trapping (IST) methodologies. Free radicals are trapped with the spin-trapping agent, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), to form DMPO macromolecule radical adducts, and then further tagged by immunospin trapping by an antibody against DMPO adducts. In this study, we combined mMRI with a biotin–Gd-DTPA–albumin-based contrast agent for signal detection with the specificity of an antibody for DMPO nitrone adducts (anti-DMPO probe), to detect in vivo free radicals in OKN-007-treated rat F98 gliomas. OKN-007 was found to significantly decrease (P < 0.05) free radical levels detected with an anti-DMPO probe in treated animals compared to untreated rats. Immunoelectron microscopy was used with gold-labeled antibiotin to detect the anti-DMPO probe within the plasma membrane of F98 tumor cells from rats administered anti-DMPO in vivo. OKN-007 was also found to decrease nuclear factor erythroid 2-related factor 2, inducible nitric oxide synthase, 3-nitrotyrosine, and malondialdehyde in ex vivo F98 glioma tissues via immunohistochemistry, as well as decrease 3-nitrotyrosine and malondialdehyde adducts in vitro in F98 cells via ELISA. The results indicate that OKN-007 effectively decreases free radicals associated with glioma tumor growth. Furthermore, this method can potentially be applied toward other types of cancers for the in vivo detection of macromolecular free radicals and the assessment of antioxidants.  相似文献   
9.
目的:探讨中药灯盏花素注射液对脑出血患者氧化应激的影响。方法:实验分成两组,以30例健康人为对照组,以25例早期脑出血患者为实验组,采用灯盏花素进行治疗,观察治疗前后两组血液中SOD、LDH的活性及MDA的含量。结果:与对照组相比,治疗前实验组SOD活性降低,而LDH的活性和MDA的含量升高。采用灯盏花素治疗后,实验组SOD显著升高,LDH的活性和MDA的含量降低;与对照组相比,无明显差异。结论:灯盏花素可通过抑制中性粒细胞产生呼吸爆发,增强机体清除氧自由基的能力,并降低脂质过氧化损伤,可应用于治疗早期脑出血。  相似文献   
10.
Objectives: Reactive oxygen species (ROS), including superoxide (O2??), play an important role in the biological effects of ionizing radiation. The human body has developed different antioxidant systems to defend against excessive levels of ROS. The aim of the present study is to investigate the redox status changes in the blood of radiologic technologists and compare these changes to control individuals.

Methods: We enrolled 60 medical workers: 20 occupationally exposed to ionizing radiation (all radiologic technologists), divided in three subgroups: conventional radiography (CR), computerized tomography (CT), and interventional radiography (IR) and 40 age- and gender-matched unexposed controls. Levels of O2?? and malondialdehyde (MDA) in blood were measured as an index of redox status, as were the activities of antioxidant enzymes superoxide dismutase (SOD) and catalase. Redox status was also assessed by measuring levels of reduced and oxidized glutathione (GSH, GSSG, respectively).

Results: Levels of O2?? and MDA, and SOD activity in the blood of IR and CT-exposed subjects were significantly higher than both the CR-exposed subjects and control individuals. However, there were no statistically significant differences in the levels of catalase, GSH and ratio of GSH/GSSG between exposed workers and control individuals.

Discussion: This study suggests that healthcare workers in CT and IR occupationally exposed to radiation have an elevated circulating redox status as compared to unexposed individuals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号